answersLogoWhite

0


Best Answer

Raising the temperature of a gas will only increase the pressure if the volume is conserved, decreased, or (only sometimes) increased. The equation relating all three of these variables is:

PV = nRT, or

Pressure(in pascales) x Volume(in m3) = (number of moles of gas) x 8.3145(J/mol*K) x Temperature(in degrees Kelvin)

We can figure out the answer to your question by using some arbitrary numbers in this equation: we will say that the original Pressure is 101325 pascales (1atm), Volume is 2m3, T is 300oK, and the number of moles of gas is 81.24 moles.

This gives us the equation for the original system:

(101325 pascales)(2m3)=(8.3145J/mol*K)(81.24mol)(300oK)

Let's now increase the temperature by 50oK, to 350oK. We will also conserve the original volume, and see if the pressure increases. This gives us the new equation:

(X pascales)(2m3)=(8.3145J/mol*K)(81.24mol)(350oK).

Since both n and R are constants when considering the same system, we do not need to investigate what will happen when these two are changed (since a change in these two is practically infeasable).

If we solve for Pressure algebraically, we find that:

X pascales = (8.3145J/mol*K)(81.24mol)(350oK)/(2m3) = 118207 pascales.

Since our new pressure, 118207 pascales, is larger than the orgininal pressure, 101325 pascales, we can see that an increase in temperature results in an increase in pressure if volume is conserved.

Additionally, we can investigate what happens when the volume is decreased by 1m3 (from 2m3 to 1m3) along with an increase in temperature by 50oK, to 350oK. We will be comparing this new system to the old system already established in the previous part of this problem. This gives us an equation for the new system:

(X pascales)(1m3)=(8.3145J/mol*K)(81.24mol)(350oK)

If we solve for Pressure algebraically, we find that:

X pascales = (8.3145J/mol*K)(81.24mol)(350oK)/(1m3) = 236414 pascales.

Since our new pressure, 236414 pascales, is larger than the orgininal pressure, 101325 pascales, we can see that an increase in temperature results in an increase in pressure if volume is decreased.

But: what happens if the Volume is increased? Let's consider a situation where an increase in temperature by 50oK, to 350oK is accompanied by a decrease in volume by 1m3, from 2m3 to 3m3. This gives us the equation:

(X pascales)(3m3)=(8.3145J/mol*K)(81.24mol)(350oK)

If we solve for Pressure algebraically, we find that:

X pascales = (8.3145J/mol*K)(81.24mol)(350oK)/(3m3) = 78804 pascales.

Since our new pressure, 78804 pascales, is smaller than the orgininal pressure, 101325 pascales, we can see that an increase in temperature DOES NOT always result in an increase in pressure if volume is increased.

As a general rule, we can therefore conclude that an increase in volume does not always result in an increase in pressure if the temperature is increased. However, there are marginal situations in which this CAN happen: if, for example, the volume is increased by 0.0000001m3, along with an increase in temperature to 350oK, we find that solving for the Pressure gives us a value of 118207 pascales, which is larger than our original pressure, 101325 pascales. So, we can see that an increase in temperature CAN SOMETIMES result in an increase in pressure if volume is increased.

An increase in volume only increases pressure in a system if the increase in volume is significantly small when compared to the increase in temperature.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
More answers
User Avatar

Anonymous

Lvl 1
3y ago

when volume and the number of particles are constant

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: When does raising the temperature of a gas increase its pressure?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What raising the temperature of a gas will increase its pressure if the volume of the gas?

Boyle's law states that the volume of a gas is inversely proportional to its pressure if the


What will raising the temperature of a gas will increase its pressure if the volume of the gas?

Boyle's law states that the volume of a gas is inversely proportional to its pressure if the


Raising the temperature of a gas will increase its pressure IF the volume of the gas?

Boyle's law states that the volume of a gas is inversely proportional to its pressure if the


Raising temperature of a gas fixed volume container will change?

it would change the pressure exerted by the gas in the container.


When does raising the temperature of gas increase its pressure?

Increasing the temperature of a gas will increase it's pressure ONLY if the volume is held constant.


When does raising the temperature of a gas increase its preasure?

This is the Gay-Lussac law: at constant volume of a gas the temperature increase when the pressure increase.


When does raising the temperature of a gas increase the pressure?

This is possible in a closed system.


Does blood solidify at high temperature?

Does is a liquid at room temperature, raising the temperature will certainly not turn it into a solid. Think about water. Raising the temperature of water will evaporate it and make it a gas. The only way to increase the temperature of something to make it into a solid is to also greatly increase the pressure.


What happens to the pressure of gas if the temperature of the gas is increased?

The pressure of a gas increases with an increase in temperature.


What happens to the pressure of the gas if the temperature of the gas is increased?

The pressure of a gas increases with an increase in temperature.


Does temperature of a gas increase or decrease under pressure?

If a gas is pressurised then the temperature will increase.


What As a temperature of a fixed volume of a gas increases the pressure will?

Pressure will be decreased