When it has gained one electron, forming Hydride ions
The oxidation number of H in NaHSO4 is +1. In this compound, Na has an oxidation state of +1, S has an oxidation state of +6, and O has an oxidation state of -2. By adding up the oxidation states and solving for H, it is determined to be +1.
The oxidation state (or number) is zero. This is true for any element in any of its allotropic elemental forms.
No, the oxidation state of hydrogen in CaH2 is -1. In this compound, calcium is in the +2 oxidation state, so hydrogen must be in the -1 oxidation state to balance the charge.
+5. In oxyacids, oxygen has an oxidation state of -2 and hydrogen an oxidation state of +1. Therefore, the single chlorine atom must have an oxidation state of +5 for the total oxidation states to add to zero.+5. In oxyacids, oxygen has an oxidation state of -2 and hydrogen an oxidation state of +1
N has +3 state on it.Each H have -1 state.
The oxidation number of H in NaHSO4 is +1. In this compound, Na has an oxidation state of +1, S has an oxidation state of +6, and O has an oxidation state of -2. By adding up the oxidation states and solving for H, it is determined to be +1.
1-
In the reaction Mg + HO → Mg + H, the oxidation state of each hydrogen atom in H (which is diatomic hydrogen, H₂) is 0. This is because in its elemental form, hydrogen exists as H₂, and elements in their natural state have an oxidation state of zero.
The oxidation state (or number) is zero. This is true for any element in any of its allotropic elemental forms.
No, the oxidation state of hydrogen in CaH2 is -1. In this compound, calcium is in the +2 oxidation state, so hydrogen must be in the -1 oxidation state to balance the charge.
+5. In oxyacids, oxygen has an oxidation state of -2 and hydrogen an oxidation state of +1. Therefore, the single chlorine atom must have an oxidation state of +5 for the total oxidation states to add to zero.+5. In oxyacids, oxygen has an oxidation state of -2 and hydrogen an oxidation state of +1
N has +3 state on it.Each H have -1 state.
The oxidation state of calcium in calcium hydride is +2, as calcium typically forms ionic compounds with a +2 oxidation state.
The oxidation state of iron in two moles or atoms of elemental iron is zero. If you mean iron (II), the oxidation state is +2.
zero- H2 is the elemental form- by definition the ON# is zero
No, the oxidation number of an atom is typically shown as a positive or negative number (or zero) that represents the charge it would have in a compound or ion. Positive oxidation numbers indicate loss of electrons, while negative oxidation numbers indicate gain of electrons.
In LiH, the oxidation number of Li is +1 and the oxidation number of H is -1. This is because lithium typically has a +1 oxidation state and hydrogen typically has a -1 oxidation state in ionic compounds.