When it conforms to all assumptions of kinetic theory
An ideal gas is an imaginary gas that perfectly follows the gas laws. This means it has no volume and no attractive or repulsive forces between molecules. It is a theoretical concept used to simplify calculations in physics and chemistry.
Krypton is not an ideal gas because it deviates from the ideal gas law at high pressures and low temperatures due to its intermolecular interactions. At standard conditions, krypton behaves closely to an ideal gas, but as conditions vary, its non-ideal characteristics become more pronounced.
No, CO2 is not considered an ideal gas because it does not perfectly follow the ideal gas law at all temperatures and pressures.
The ideal conditions for a gas mixture containing propane to behave like an ideal gas when mixed with air are when the temperature is high, the pressure is low, and the molecules are far apart from each other. This allows the gas molecules to move freely and independently, similar to how an ideal gas behaves.
No, steam is not considered an ideal gas. Ideal gases follow the ideal gas law, which assumes that gas particles have no volume and do not interact with each other. Steam, on the other hand, consists of water vapor molecules that have volume and can interact with each other.
An ideal gas is an imaginary gas that perfectly follows the gas laws. This means it has no volume and no attractive or repulsive forces between molecules. It is a theoretical concept used to simplify calculations in physics and chemistry.
ideal gas
That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.
An ideal gas is not a real thing, just an idea. The definition of an ideal gas is one where there are no forces between the particles. If there are no forces, there is nothing to bring the particles together into a liquid. In a real gas of course there are forces of attraction which keep the particles together when they are moving sufficiently slowly.
There are ideal gases..
An ideal gas
Ideal gases can be explained by the Kinetic Molecular Theory: 1) no attraction between gas particles 2) volume of individual gas particles are essentially zero 3) occupy all space available 4) random motion 5) the average kinetic energy is directly proportional to Kelvin Real gases has volume and attraction exists between gas particles. No gas behaves entirely ideal. Real gases act most ideal when temperature is is high and at low pressure.
the ideal gas constant D:
Krypton is not an ideal gas because it deviates from the ideal gas law at high pressures and low temperatures due to its intermolecular interactions. At standard conditions, krypton behaves closely to an ideal gas, but as conditions vary, its non-ideal characteristics become more pronounced.
No, CO2 is not considered an ideal gas because it does not perfectly follow the ideal gas law at all temperatures and pressures.
No, oxygen is not considered an ideal gas because it does not perfectly follow the ideal gas law at all temperatures and pressures.
All gas laws are absolutely accurate only for an ideal gas.