When potassium chlorate and sugar are combined and heated, it produces oxygen and expanding gases, which are commonly used in making solid-fuel rockets.
The reaction between potassium chlorate and oxygen gas generates potassium chloride and oxygen gas. Therefore, the amount of potassium chlorate produced from the reaction is equal to the amount of potassium chlorate that was used, which is 500 grams.
Potassium chlorate is a chemical compound composed of potassium, chlorine, and oxygen. It is not typically found in nature in its pure form but can be produced synthetically for various industrial uses, such as in fireworks, matches, and explosives.
The decomposition of potassium chlorate produces oxygen gas and potassium chloride. The molar ratio of oxygen to potassium chlorate is 3:2. Therefore, to find the grams of oxygen produced, you would calculate (6.02g * 3 mol O2/2 mol KClO3) * molar mass of O2.
12 moles KClO3 (3 moles O/1 mole KClO3) = 36 moles of oxygen.
The chemical reactin is:2 KClO3 = 2 KCl + 3 O24 moles of potassium chlorate produce 6 moles oxygen.
The reaction between potassium chlorate and oxygen gas generates potassium chloride and oxygen gas. Therefore, the amount of potassium chlorate produced from the reaction is equal to the amount of potassium chlorate that was used, which is 500 grams.
Potassium chlorate is a chemical compound composed of potassium, chlorine, and oxygen. It is not typically found in nature in its pure form but can be produced synthetically for various industrial uses, such as in fireworks, matches, and explosives.
The decomposition of potassium chlorate produces oxygen gas and potassium chloride. The molar ratio of oxygen to potassium chlorate is 3:2. Therefore, to find the grams of oxygen produced, you would calculate (6.02g * 3 mol O2/2 mol KClO3) * molar mass of O2.
12 moles KClO3 (3 moles O/1 mole KClO3) = 36 moles of oxygen.
soluble
I Don't knows Sorry
The chemical reactin is:2 KClO3 = 2 KCl + 3 O24 moles of potassium chlorate produce 6 moles oxygen.
To determine the grams of potassium chloride formed, you first need to calculate the moles of oxygen produced by the decomposition of potassium chlorate. Then, use the stoichiometry of the balanced chemical equation to convert moles of oxygen to moles of potassium chloride. Finally, from the molar mass of potassium chloride, you can calculate the grams formed.
To calculate the amount of oxygen gas produced from potassium chlorate, use the balanced chemical equation for the decomposition of potassium chlorate: 2KClO3 -> 2KCl + 3O2. From the equation, every 2 moles of KClO3 produce 3 moles of O2. First, convert the given mass of KClO3 to moles, then use the mole ratio from the balanced equation to find the moles of O2 produced. Finally, convert moles of O2 to grams using its molar mass (32 g/mol).
For every mole of potassium chlorate that decomposes, three moles of oxygen are produced. Therefore, if 7.5 moles of potassium chlorate decompose, 22.5 moles of oxygen would be produced (7.5 moles x 3).
If a potassium chlorate sample is contaminated with KCl, the experimental percent oxygen would be lower than the theoretical percent oxygen. This is because KCl does not contain oxygen, so the contamination would dilute the amount of oxygen produced during the decomposition of potassium chlorate.
2KClO3 --> 2KCl + 3O2For every 3 moles of oxygen gas produced, 2 moles of potassium chlorate are used.6 moles O2 * (2 moles KClO3 reacted / 3 moles O2 produced) = 4 moles KClO3