I Don't knows Sorry
The limiting reagent is the reactant that is completely consumed first in a chemical reaction. To determine the limiting reagent in the reaction between sodium hydroxide and copper chloride, you would need to compare the moles of each reactant present and see which one is in excess and which one is limiting.
To find the limiting reactant, we need to determine how many grams of silver chloride can be produced from each reactant and compare the results. Calculate the amount of silver chloride that can be produced from 10.0 g of silver nitrate. Calculate the amount of silver chloride that can be produced from 15.0 g of barium chloride. The reactant that produces the lesser amount of silver chloride will be the limiting reactant.
To determine the limiting reactant, calculate the moles of each reactant using their molar masses. Then, use the stoichiometry of the reaction to determine which reactant will be consumed first. Whichever reactant produces the lesser amount of product will be the limiting reactant.
The salt formed by potassium hydroxide and sulphuric acid is potassium sulphate (K2SO4). Though if potassium hydroxide is the limiting reagent potassium bisulphate (KHSO4) will also form.
To find the limiting reactant, we need to calculate the moles of each reactant. Then, use the stoichiometry of the balanced chemical equation to determine which reactant limits the amount of aluminum chloride that can be produced. Finally, calculate the mass of aluminum chloride produced based on the limiting reactant.
First write a balanced chemical equation: 2K + Br2 ---> 2KBR Find the limiting reactant by using the moles of each element and determining which one gives you the smallest number of moles of potassium bromide. 2.92 mol K (2 mol KBr/2 mol K)= 2.92 mol KBr 1.78 mol Br2 (2 mol KBR/1 mol Br2)=3.56 mol KBr potassium is your limiting reactant so the max. number of moles of KBr that can be produced is 2.92 mol of KBr
First, determine the limiting reactant by using the stoichiometry of the reaction. Then calculate the amount of iodine produced based on the limiting reactant. Finally, convert the amount of iodine produced to mass using its molar mass.
To calculate the moles of aluminum chloride produced, you would first need to determine the limiting reactant. Compare the moles of each reactant (Aluminum and Cl2) using their molar masses. Whichever reactant produces fewer moles of aluminum chloride would be the limiting reactant. Once you have that, you can use the stoichiometry of the balanced chemical equation to calculate the moles of aluminum chloride produced.
If more potassium iodide is added to the potassium iodate (V) solution in the conical flask, there will be more iodine liberated. This is because potassium iodide reacts with potassium iodate (V) to produce iodine. Therefore, increasing the amount of potassium iodide increases the rate of reaction and the amount of iodine generated.
Based on the chemical reaction: CaCO3 + 2HCl -> CaCl2 + CO2 + H2O Calculate the limiting reactant by converting each reactant to moles and comparing the ratios. The limiting reactant is calcium carbonate. Calculate the theoretical yield of calcium chloride using the stoichiometry of the reaction.
The molar mass of sodium chloride is 58.44 g/mol. To find the mass of sodium chloride formed, you need to compare the moles of sodium and chlorine to determine the limiting reactant. Calculate moles of sodium and chlorine, determine limiting reactant, and use stoichiometry to find mass of sodium chloride formed.
Yes, the amount of potassium iodide added to the potassium iodate solution in iodometric titration affects the amount of iodine liberated. Potassium iodide serves as a reducing agent, reacting with the iodate ion to form iodine. The quantity of potassium iodide added determines the rate and completeness of this reaction, impacting the amount of liberated iodine available for titration.