Groups 6 and 7.
Down the group electron affinity decreases Across a period electron affinity increases. However, it should be noted that chlorine is having higher electron affinity than flourine due to the small size of fluorine atom)
The elements to the left side of the periodic table in groups VIa and VIIa have high electron affinity, as they tend to gain electrons to achieve a stable octet configuration. Group VIIa elements (halogens) have the highest electron affinities in the periodic table.
No, nitrogen does not have a low electron affinity. Electron affinity increases as you go up and to the right on the periodic table. Thus, Groups I and II elements (ex. Cs, Ba, Sr, etc.) have LOW electron affinities and the halogens in Group VII (Br, Cl, F, etc) have the HIGHEST electron affinities. Chlorine has the HIGHEST electron affinity on the periodic table.(Fluorine is an exception in this case.)
The halogens, specifically the group 17 elements, have the most negative electron affinities. This is because they have a strong attraction for gaining an electron to achieve a stable electron configuration with a full outer shell. Fluorine has the highest electron affinity among the halogens.
Selenium has a lower electron affinity than germanium. Electron affinity is the energy released when an atom gains an electron to form a negative ion. In general, electron affinity tends to decrease as you move down a group in the periodic table, which is why selenium has a lower electron affinity than germanium.
decreases from top to bottom
Down the group electron affinity decreases Across a period electron affinity increases. However, it should be noted that chlorine is having higher electron affinity than flourine due to the small size of fluorine atom)
The elements to the left side of the periodic table in groups VIa and VIIa have high electron affinity, as they tend to gain electrons to achieve a stable octet configuration. Group VIIa elements (halogens) have the highest electron affinities in the periodic table.
No, nitrogen does not have a low electron affinity. Electron affinity increases as you go up and to the right on the periodic table. Thus, Groups I and II elements (ex. Cs, Ba, Sr, etc.) have LOW electron affinities and the halogens in Group VII (Br, Cl, F, etc) have the HIGHEST electron affinities. Chlorine has the HIGHEST electron affinity on the periodic table.(Fluorine is an exception in this case.)
Aluminum has the lowest electron affinity in Group 13 because it is the most electropositive element in this group due to its position in the periodic table. Electropositive elements tend to have lower electron affinities.
Group 8A, the noble gases because they have high electron affinity.
The group that has a substantial affinity for electrons is group 17, the halogens. These elements have 7 valence electrons which makes them have the highest affinity for electrons.
The halogens, specifically the group 17 elements, have the most negative electron affinities. This is because they have a strong attraction for gaining an electron to achieve a stable electron configuration with a full outer shell. Fluorine has the highest electron affinity among the halogens.
Selenium has a lower electron affinity than germanium. Electron affinity is the energy released when an atom gains an electron to form a negative ion. In general, electron affinity tends to decrease as you move down a group in the periodic table, which is why selenium has a lower electron affinity than germanium.
The halogen with the least-negative electron affinity is astatine. Electron affinity and electronegativities decreases down a group. Since astatine is the last halogen located in Group 17 as you move down the column from fluorine, it has the least negative electron affinity.
Electron affinity is an elements' ability to attract electrons and is variable for each element. Generally the more electronegative atoms are furthest to the right bottom of the periodic table and ascending to the left the elements lose their electron accepting ability.
As you go across a period; Left to right, the electron affinity increases. As you go down a group; top to bottom, the electron affinity decreases.