Electron affinity is an elements' ability to attract electrons and is variable for each element. Generally the more electronegative atoms are furthest to the right bottom of the Periodic Table and ascending to the left the elements lose their electron accepting ability.
Diamond is an unique material, which can exhibit both negative and positive electron affinities. A clean diamond surface yields a positive electron affinity of around 0.6 eV. In contrast, hydrogenated and hydroxylated diamond surfaces exhibit negative electron affinities of -1.1 and -2.13 eV, respectively. Moreover, halogenated diamond surfaces give positive electron affinities. Hope this will help :-)
Out of carbon (C), potassium (K), chlorine (Cl), and iron (Fe), carbon has the smallest electron affinity. Carbon tends to resist gaining an extra electron due to its stable electron configuration in its outer shell.
Aluminum has the lowest electron affinity in Group 13 because it is the most electropositive element in this group due to its position in the periodic table. Electropositive elements tend to have lower electron affinities.
Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. However, fluorine is an exception -- and the element with the highest electron affinity is chlorine.(Note that the most electronegative element is fluorine however; 'electronegativity' is not exactly the same as 'electron affinity'.)Electronegativity is the ability of an atom in a molecule to draw bonding electrons to itselfElectron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion.The reason that the electron affinity is not as high as might otherwise be predicted for fluorine, is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).
The metal tends to lose the electron because it has a higher electron affinity, and the nonmetal tends to gain the electron because it has a higher electronegativity. This has to do with the placement of the element on the periodic table. The further to the right you go, the more the element wants to gain electrons in an ionic compound.
Selenium has a lower electron affinity than germanium. Electron affinity is the energy released when an atom gains an electron to form a negative ion. In general, electron affinity tends to decrease as you move down a group in the periodic table, which is why selenium has a lower electron affinity than germanium.
The electron affinity of an element can be either positive or negative, depending on whether the element tends to gain or lose electrons when forming chemical bonds.
Helium has no electron affinity.
chloline
The electron affinity of germanium is considered to be moderate. Germanium is a metalloid element with an electron affinity that falls between that of metals and nonmetals.
Diamond is an unique material, which can exhibit both negative and positive electron affinities. A clean diamond surface yields a positive electron affinity of around 0.6 eV. In contrast, hydrogenated and hydroxylated diamond surfaces exhibit negative electron affinities of -1.1 and -2.13 eV, respectively. Moreover, halogenated diamond surfaces give positive electron affinities. Hope this will help :-)
Yes, that is part of the definition of electron affinity.
The electron affinity of sulfur is -200 kJ/mol.
The energy change that occurs when an electron is added to a neutral atom. This is usually exothermic. Noble Gases are excluded from this. Equation: X(element)+e-(electron)---------> X-1+ energy
Chlorine has a negative second electron affinity because it releases energy when gaining an additional electron. This makes it less likely to accept a second electron compared to its first electron affinity, which is positive.
Electron affinity tends to become more exothermic as you move right across a period because the effective nuclear charge increases, leading to a stronger attraction between the nucleus and the incoming electron. This results in a more stable electron configuration and a release of energy.
Yes. It's true. Chlorine has the highest electron affinity, then Fluorine, Bromine and Iodine