I believe no scientist said exactly this. It is the (two) electrons in the same orbital that must have opposite spins. And the scientist who said that was Wolfgang Pauli in 1925. (Pauli exclusion principle)
Electrons can occupy the same orbital if they have opposite spin. Spin is a quantum property of particles that can be described as either "up" or "down." The Pauli exclusion principle states that no two electrons in an atom can have the same set of quantum numbers, so electrons in the same orbital must have opposite spin.
Hund's rule: "Two electrons cannot share the same set of quantum numbers within the same system." There is room for only two electrons in each spatial orbital (according to Pauli exclusion principle, mentioned in question).
Two electrons can occupy the same orbital if they have opposite spins. Pauli's exclusion principle states that no two electrons in an atom can have the same set of four quantum numbers, which include spin.
The Pauli exclusion principle would require that an electron sharing the same orbital would have to have opposite spin from the other particle in the pair. They therefore have different spin quantum numbers of +(1/2) and -(1/2)
When you fill an orbital the electrons must spin in opposite directions. This results in no two electrons having the same quantum number, a result defined as the Pauli Exclusion Principle. You can have 2 electrons in an orbital. Note that 2py 2px and 2pz are three different orbitals.
Electrons can occupy the same orbital if they have opposite spin. Spin is a quantum property of particles that can be described as either "up" or "down." The Pauli exclusion principle states that no two electrons in an atom can have the same set of quantum numbers, so electrons in the same orbital must have opposite spin.
According to the Pauli exclusion principle, electrons in the same orbital must have opposite spins. This is because each orbital can hold a maximum of two electrons with opposite spins to minimize their mutual repulsion. Pairing electrons with opposite spins helps to stabilize the atom's overall energy.
Hund's rule: "Two electrons cannot share the same set of quantum numbers within the same system." There is room for only two electrons in each spatial orbital (according to Pauli exclusion principle, mentioned in question).
The Pauli exclusion principle states that no two electrons in an atom can have the same set of quantum numbers, including spin. Therefore, electrons in the same orbital must have opposite spins to adhere to this principle. This helps to ensure the stability of the electron pair within the orbital.
Two electrons can occupy the same orbital if they have opposite spins. Pauli's exclusion principle states that no two electrons in an atom can have the same set of four quantum numbers, which include spin.
The Pauli exclusion principle would require that an electron sharing the same orbital would have to have opposite spin from the other particle in the pair. They therefore have different spin quantum numbers of +(1/2) and -(1/2)
The two arrows with a single block of an orbital diagram must be written in opposing directions because the electrons are said to be rotating in opposite directions. This means the two electrons in the orbital are spinning on their axis in opposite ways.
When you fill an orbital the electrons must spin in opposite directions. This results in no two electrons having the same quantum number, a result defined as the Pauli Exclusion Principle. You can have 2 electrons in an orbital. Note that 2py 2px and 2pz are three different orbitals.
The arrows pointing in opposite directions in the orbital filling diagram represent the two electrons in the same orbital having opposite spins. According to the Pauli exclusion principle, no two electrons in an atom can have the same set of quantum numbers, so one electron must have a spin of +1/2 and the other -1/2.
all other orbitals at that sublevel contain at least one electron (plato :P)
Yes. Always. Otherwise they would break the fundamental rules of quantum mechanics, which say that no two electrons can have the same four quantum numbers -- and spin is the 4th quantum number. If two e- are in the same orbital, they share 3 quantum numbers, but the spin quantum number must then be different.
An orbital can hold not more than 2 electrons, and if there are two electrons in the orbital, they must have opposite (paired) spins. Therefore, no two electrons in the same atom can have the same set of four quantum numbers. otherwise the Pauli exclusion principle explain that the feature of particles dependent on its nature. for example electrons is fermion thus 2 electrons can accommodate in one level (orbital) but proton is bozone thus 1 proton accommodate in one level.