Sulfuric acid is a stronger base, meaning it more completely dissociates. Acetic acid does not completely dissociate, and therefore does not change the concentration of hydrogen ions in solution to the extent that sulfuric acid does. Since pH = -log[Hydrogen ions], sulfuric acid will have a lower pH.
1 molar sulfuric acid is a solution of sulfuric acid with a concentration of 1 mole per liter. Ammonium sulfate, on the other hand, is a salt compound formed by the reaction of ammonia and sulfuric acid. The 1 molar concentration of ammonium sulfate refers to the amount of the salt dissolved in a liter of solution.
The molar mass of acetic acid can be determined using the elevation of boiling point method by measuring the change in boiling point of a solution of acetic acid relative to the boiling point of the pure solvent. By applying the equation ΔT = K_b * m, where ΔT is the change in boiling point, K_b is the ebullioscopic constant of the solvent, and m is the molality of the solution, the molar mass of acetic acid can be calculated using the formula MM = (RT2) / (K_b * ΔT), where MM is the molar mass of acetic acid, R is the gas constant, and T is the temperature in Kelvin.
To prepare a 10M solution of acetic acid, dissolve 60.05g of glacial acetic acid (CH3COOH) in enough water to make a final volume of 1 liter. The molar mass of acetic acid is 60.05 g/mol. Make sure to wear appropriate safety gear, as acetic acid is corrosive.
Well if you have 99% solution of H2SO4, that means of one L you have 990 mL the acid. The density of sulphuric acid is 1.84g/mL... so that means you will have by mass 1821.6g of acid. The molecular weigth of H2SO4 is 98.1g/mol... so if you divide mass by molar mass you should get moles... which is about... 18.57moles. So that means 99% sulphuric acid is approx. 19M.
The moles of NaOH at the equivalence point will equal the moles of acetic acid present in the solution. Therefore, using the volume and concentration of NaOH used at the equivalence point, you can calculate the moles of NaOH used. Then, based on the stoichiometry of the reaction, you can determine the moles of acetic acid, and finally, determine the concentration of the acetic acid solution.
For acetic acid the molar and normal concentrations are identical.The value is 60,05 g/L.
1 molar sulfuric acid is a solution of sulfuric acid with a concentration of 1 mole per liter. Ammonium sulfate, on the other hand, is a salt compound formed by the reaction of ammonia and sulfuric acid. The 1 molar concentration of ammonium sulfate refers to the amount of the salt dissolved in a liter of solution.
H+, OH-, SO42- ions
The molar mass of acetic acid can be determined using the elevation of boiling point method by measuring the change in boiling point of a solution of acetic acid relative to the boiling point of the pure solvent. By applying the equation ΔT = K_b * m, where ΔT is the change in boiling point, K_b is the ebullioscopic constant of the solvent, and m is the molality of the solution, the molar mass of acetic acid can be calculated using the formula MM = (RT2) / (K_b * ΔT), where MM is the molar mass of acetic acid, R is the gas constant, and T is the temperature in Kelvin.
To prepare a 10M solution of acetic acid, dissolve 60.05g of glacial acetic acid (CH3COOH) in enough water to make a final volume of 1 liter. The molar mass of acetic acid is 60.05 g/mol. Make sure to wear appropriate safety gear, as acetic acid is corrosive.
Well if you have 99% solution of H2SO4, that means of one L you have 990 mL the acid. The density of sulphuric acid is 1.84g/mL... so that means you will have by mass 1821.6g of acid. The molecular weigth of H2SO4 is 98.1g/mol... so if you divide mass by molar mass you should get moles... which is about... 18.57moles. So that means 99% sulphuric acid is approx. 19M.
Not necessarily or even usually. The term "one molar" refers to the concentration of the acid added and does not have anything to do with the concentration of ferrous ions.
The moles of NaOH at the equivalence point will equal the moles of acetic acid present in the solution. Therefore, using the volume and concentration of NaOH used at the equivalence point, you can calculate the moles of NaOH used. Then, based on the stoichiometry of the reaction, you can determine the moles of acetic acid, and finally, determine the concentration of the acetic acid solution.
The molar mass of acetic acid is 60,05 g.
To find the molarity, first convert the mass of sulfuric acid to moles by dividing by its molar mass (98.08 g/mol). Then, calculate the molarity by dividing the moles of sulfuric acid by the volume of the solution in liters (280 mL = 0.28 L). Molarity = moles of solute / liters of solution.
M refers to molar. Molarity is the number of moles of a solute dissolved in one liter of solvent. 3M means there are 3 moles of sulfuric acid in one liter, and 9M means 9 moles of sulfuric acid are dissolved in one liter.
To neutralize the sulfuric acid completely, you need a 1:2 molar ratio of sodium hydroxide to sulfuric acid. Therefore, you would need to add twice the amount of sodium hydroxide compared to the amount of sulfuric acid, which is 40.0 mL of the sodium hydroxide solution.