Fructose , after being absrobed ,goes through two pathways. Either it forms fructose-6-phosphate (by hexokinase) or it gets phosphorylated to fructose-1-phosphate by fructokinase found in liver.since liver contains much of he fructose obtained from diet fructose-1-phosphate is produced in appreciable amounts. Fructose-1-phosphate is acted upun by ALDOLASE B which breaks it into glecraldehyde and Dihydroxyacetone phosphate. both these enter glycolysis and since reactions catalyzed be hexokinase and epecially PFK-1 have been skipped in Fructose-1-phosphate metabolism hence glycolysis occurs faster ( PFK1 reaction is the main rate limiting step in glycolysis)
The steps in glycolysis that are irreversible are catalyzed by the enzymes hexokinase/glucokinase, phosphofructokinase, and pyruvate kinase. These steps are key regulatory points in glycolysis ensuring the forward flow of glucose through the pathway.
The intermediate products of glycolysis include glucose-6-phosphate, fructose-6-phosphate, fructose-1 6-bisphosphate, PGAL, bisphosphoglycerate, and PEP. The main intermediate products are fructose-1 6-bisphosphate, PGAL, and PEP.
Other sugars do enter into glycolysis such as fructose, galactose and mannose. Fructose can directly enter into glycolysis while the other two is converted to a glucose intermediate molecule because it can produce the two triose phophate molecules (DHAP and G3P) which are needed to generate energy from the reactions (ATP) and pyruvate.
Fructose metabolism differs from glucose metabolism in the human body because fructose is primarily metabolized in the liver, while glucose is metabolized in various tissues throughout the body. Additionally, fructose metabolism bypasses the initial steps of glycolysis and is converted into triglycerides more readily, potentially leading to increased fat storage.
A bolus injection is a single, rapid administration of a medication or fluid directly into the bloodstream. On the other hand, a bolus infusion involves administering a larger volume of medication or fluid over a short period, usually within minutes, to achieve a desired therapeutic effect. In summary, bolus injection is quick and immediate, while bolus infusion is more gradual but still delivered rapidly.
Fructose-6-phosphate
Rapid potassium infusion causes diastolic and not systolic cardiac arrest.
The committed step of glycolysis is the reaction catalyzed by phophofructokine (PFK) converting fructose-6-phosphate into fructose-1,6- bisphosphate. The reaction is irreversible and secondly, it's the only reaction peculiar to the glycolysis.
Phosphofructokinase-2 converts fructose-6-phosphate to fructose-2,6-bisphosphate.
The steps in glycolysis that are irreversible are catalyzed by the enzymes hexokinase/glucokinase, phosphofructokinase, and pyruvate kinase. These steps are key regulatory points in glycolysis ensuring the forward flow of glucose through the pathway.
Fructose-6-phosphate to fructose 1,6-bisphosphate. Phosphofructokinase (PFK). Requires ATP, Mg. First majorly regulated step of glycolysis. Irreversible
The steps of glycolysis that are irreversible are the conversion of glucose to glucose-6-phosphate by hexokinase, the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1, and the conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase.
The steps in glycolysis that are irreversible are the conversion of glucose to glucose-6-phosphate by hexokinase, the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1, and the conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase.
Possible Answers: I, II, and III
Yes, fructose can enter glycolysis by bypassing two key regulatory steps. When fructose is phosphorylated by fructokinase, it is converted to fructose-1-phosphate, which skips the insulin-regulated step involving phosphofructokinase (PFK). This means that fructose metabolism can proceed more rapidly compared to glucose, potentially leading to increased fat synthesis if consumed in excess.
The control point in glycolysis is the enzyme phosphofructokinase. This enzyme catalyzes the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate, a key step in the glycolysis pathway. Phosphofructokinase activity is allosterically regulated by ATP, citrate, and AMP levels in the cell.
glucose-6-phosphate . . . fructose-6-phosphate