Number one, it doesn't define "smaller amount" (by mass? by volume? by number of moles?), and number two, it doesn't take into account the fact that the reaction might require more molecules of one reagent than the other.
It's not so much "false" as "not strictly true." The statement could, in some cases, be true.
A reactant that gives the lowest yield by limiting the amount of product is called a limiting reactant. The limiting reactant will run out, so that only a limited amount of product can be made from the reactants.
In a chemical reaction the limiting reactant is the reactant that there is the least of in the reaction; it determines the amount of product formed. In a chemical reaction it is the reactant that gets completely "used up"
To determine the limiting reagent, you need to find the molar amounts of each reactant. Compare the molar amounts of P and I to the balanced chemical equation to see which one is present in the lower stoichiometric amount. The reactant that gives the smaller amount of product is the limiting reagent.
To determine the limiting reactant, we need to compare the moles of each reactant. First, calculate the moles of aluminum and copper sulfate separately. Then, determine the mole ratio between them and see which reactant is present in lower amount compared to the stoichiometric ratio. The reactant that is present in lower moles is the limiting reactant.
The amount of product formed is directly proportional to the amount of limiting reactant used because the limiting reactant determines the maximum amount of product that can be produced in a chemical reaction. Any excess reactant beyond the limiting reactant will not contribute to the formation of additional product. Thus, the amount of product formed is dictated by the amount of limiting reactant available.
A reactant that gives the lowest yield by limiting the amount of product is called a limiting reactant. The limiting reactant will run out, so that only a limited amount of product can be made from the reactants.
In a chemical reaction the limiting reactant is the reactant that there is the least of in the reaction; it determines the amount of product formed. In a chemical reaction it is the reactant that gets completely "used up"
The limiting reactant in the synthesis of cyclohexene is typically the starting material that is present in the smallest amount compared to the stoichiometric ratios in the reaction. It is the reactant that gets completely consumed first, thereby limiting the amount of product that can be formed.
To determine the limiting reagent, you need to find the molar amounts of each reactant. Compare the molar amounts of P and I to the balanced chemical equation to see which one is present in the lower stoichiometric amount. The reactant that gives the smaller amount of product is the limiting reagent.
To determine the limiting reactant, we need to compare the moles of each reactant. First, calculate the moles of aluminum and copper sulfate separately. Then, determine the mole ratio between them and see which reactant is present in lower amount compared to the stoichiometric ratio. The reactant that is present in lower moles is the limiting reactant.
The amount of product formed is directly proportional to the amount of limiting reactant used because the limiting reactant determines the maximum amount of product that can be produced in a chemical reaction. Any excess reactant beyond the limiting reactant will not contribute to the formation of additional product. Thus, the amount of product formed is dictated by the amount of limiting reactant available.
In the reaction between magnesium (Mg) and hydrochloric acid (HCl), the limiting reactant is the reactant that is consumed first, which determines the maximum amount of product that can be formed. To determine the limiting reactant, you would need to compare the moles of magnesium and hydrochloric acid to see which one is present in the lowest stoichiometric amount.
The theoretical yield of a reaction is determined by the limiting reactant because this reactant is completely consumed in the reaction, and the amount of product that can be formed is limited by the amount of the limiting reactant available. Any excess of the other reactant does not contribute to the formation of additional product beyond what is possible with the limiting reactant.
The limiting reactant is the reactant that is completely consumed first, limiting the amount of products that can be formed. Once the limiting reactant is used up, the reaction stops, regardless of the amounts of excess reactants present. This results in the amounts of products formed being determined solely by the limiting reactant.
The limiting reactant is the reactant that is completely consumed in a chemical reaction. In this case, you would need to compare the moles of each reactant to see which one is completely used up first. Whichever reactant is present in the lowest stoichiometric amount is the limiting reactant.
When the limiting reactant in a chemical reaction is completely used, the reaction stops because there are no more reactants available to continue producing products. At this point, any excess reactants or products may still be present in the reaction mixture. The amount of product formed will be determined by the amount of limiting reactant that was originally present.
The Limiting Reactant is the reactant that runs out first in a reaction.