Leaving NaOH in the burette can lead to errors in subsequent titrations due to contamination. It can also react with moisture in the air, causing the concentration to change over time. Additionally, it is good laboratory practice to clean and dry equipment after use to prevent any potential issues in future experiments.
To achieve accurate volume of NaOH during titration, you should use a calibrated burette to deliver the NaOH solution, ensure the meniscus of the liquid is at eye level when taking readings, and record the volume added precisely at the endpoint of the titration when the indicator changes color. Practice consistent technique and avoid parallax errors for accurate volume measurements.
The amount of NaOH used in a titration depends on the volume and concentration of the NaOH solution used in the experiment. To calculate the exact amount of NaOH used, you would need to know the molarity of the NaOH solution and the volume used in the titration.
Ethanolic NaOH is used instead of aqueous NaOH in titration to avoid side reactions with water and reduce error in the titration process. The absence of water in ethanolic NaOH helps maintain the concentration and stability of the solution, resulting in more accurate and precise titration results.
The number of moles of NaOH used in the titration process can be calculated by dividing the volume of NaOH solution used by the molarity of the NaOH solution.
Standardizing the NaOH solution before titration is important to accurately determine its actual concentration. This ensures the accuracy and reliability of the titration results by eliminating any discrepancies that may arise from variations in the concentration of the NaOH solution.
You have to realise that a drop from the burette for instance is insignificant, if you are dealing with at least 10ml solution which you usually deal with on a titration. If you don't want to regard it as insignificant, then if NaOH is in the burette, then the solution doesn't become more concentrated with NaOH because that drop escaped.
To achieve accurate volume of NaOH during titration, you should use a calibrated burette to deliver the NaOH solution, ensure the meniscus of the liquid is at eye level when taking readings, and record the volume added precisely at the endpoint of the titration when the indicator changes color. Practice consistent technique and avoid parallax errors for accurate volume measurements.
The amount of NaOH used in a titration depends on the volume and concentration of the NaOH solution used in the experiment. To calculate the exact amount of NaOH used, you would need to know the molarity of the NaOH solution and the volume used in the titration.
Ethanolic NaOH is used instead of aqueous NaOH in titration to avoid side reactions with water and reduce error in the titration process. The absence of water in ethanolic NaOH helps maintain the concentration and stability of the solution, resulting in more accurate and precise titration results.
The number of moles of NaOH used in the titration process can be calculated by dividing the volume of NaOH solution used by the molarity of the NaOH solution.
Standardizing the NaOH solution before titration is important to accurately determine its actual concentration. This ensures the accuracy and reliability of the titration results by eliminating any discrepancies that may arise from variations in the concentration of the NaOH solution.
The titration curve obtained in titration of HCl against NaOH is a typical acid-base titration curve. It shows a gradual increase in pH at the beginning due to the addition of base (NaOH). At the equivalence point, the curve shows a sharp increase in pH since all the HCl has been neutralized. After the equivalence point, the pH continues to rise as excess NaOH is added.
The recommended concentration of NaOH for a successful titration experiment is typically around 0.1 to 0.5 M (molarity).
This depends on the mass of NaOH dissolved in 1 L water.
To determine the volume of NaOH used in the titration, you need to know the concentration of the NaOH solution and the volume required to reach the endpoint. Use the formula: volume NaOH (L) = volume HCl (L) * concentration HCl / concentration NaOH.
Phenolphthalein is commonly used as an indicator in the titration of NaOH and H2SO4. It changes color from colorless to pink as the solution reaches a specific pH range, signaling the endpoint of the titration.
cuz' borax contain boric acid (H3BO3) which is very weak acid , thus it gives non accurate titration, so we add neutral glycerol to increase the acidity by the way we add glycerol after titration of NaOH not before