answersLogoWhite

0

Using H2SO4 in iodometric titration can lead to the formation of H2O2, which interferes with the reaction. It can also oxidize iodide ions prematurely, affecting the accuracy of the titration. Therefore, a different acid like HCl is typically used in iodometric titration.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Chemistry

What are iodometric and iodometric titration?

Iodometric titration involves determining the concentration of a substance by measuring the amount of iodine generated in a reaction. Iodometric titration, on the other hand, refers to a type of redox titration that uses iodine as the titrant to determine the amount of a substance, typically an oxidizing agent, present in a sample.


What is the difference between iodometric titration and iodimetric titration?

Iodometric titration involves the titration of iodine with a reducing agent, while iodimetric titration involves the titration of iodide with an oxidizing agent. In iodometric titration, iodine is detected by a starch indicator to determine the end point, while in iodimetric titration, iodide ion concentration is determined by titration with a standard solution of an oxidizing agent.


Is iodometric titration and redox titration is same?

No, they are not the same, but 1 is part of 2.Iodometric titration is just one of the (larger) group (or class) of oxidimetric titrations, which in turn is part of the much (larger) group (or class) of volumetric analysis method.


Can we carry out an iodometric titration using a potentiometer?

No, iodometric titration is typically done using a standard titration setup with a burette and indicator to detect the endpoint. A potentiometer measures the voltage produced in a system, making it unsuitable for this type of titration.


Why analysis of Cu from brass solution is considered as an iodometric titration?

Copper in brass can be oxidized to Cu2+ by iodine in a redox reaction. The iodine acts as the titrant in the reaction and the copper is being titrated. It is considered an iodometric titration due to the involvement of iodine in the titration process.

Related Questions

What are iodometric and iodometric titration?

Iodometric titration involves determining the concentration of a substance by measuring the amount of iodine generated in a reaction. Iodometric titration, on the other hand, refers to a type of redox titration that uses iodine as the titrant to determine the amount of a substance, typically an oxidizing agent, present in a sample.


What is the difference between iodometric titration and iodimetric titration?

Iodometric titration involves the titration of iodine with a reducing agent, while iodimetric titration involves the titration of iodide with an oxidizing agent. In iodometric titration, iodine is detected by a starch indicator to determine the end point, while in iodimetric titration, iodide ion concentration is determined by titration with a standard solution of an oxidizing agent.


Is iodometric titration and redox titration is same?

No, they are not the same, but 1 is part of 2.Iodometric titration is just one of the (larger) group (or class) of oxidimetric titrations, which in turn is part of the much (larger) group (or class) of volumetric analysis method.


Can we carry out an iodometric titration using a potentiometer?

No, iodometric titration is typically done using a standard titration setup with a burette and indicator to detect the endpoint. A potentiometer measures the voltage produced in a system, making it unsuitable for this type of titration.


Why analysis of Cu from brass solution is considered as an iodometric titration?

Copper in brass can be oxidized to Cu2+ by iodine in a redox reaction. The iodine acts as the titrant in the reaction and the copper is being titrated. It is considered an iodometric titration due to the involvement of iodine in the titration process.


How do you calculate the moles of H2SO4 in a titration?

To calculate the moles of H2SO4 in a titration, you can use the formula: moles Molarity x Volume. First, determine the molarity of the H2SO4 solution. Then, measure the volume of the solution used in the titration. Multiply the molarity by the volume to find the moles of H2SO4.


Why use sodium bicarbonate in iodometric titration?

Sodium bicarbonate is used in iodometric titration to react with excess iodine that may be present after the reaction with the analyte. This helps neutralize the solution and prevent any further reactions that could interfere with the titration endpoint. Additionally, sodium bicarbonate helps stabilize the pH of the solution during the titration process.


Why you use iodine in iodometric titration?

Iodine is used in iodometric titration as the titrant because it can easily react with reducing agents to form iodide ions. Its reaction with reducing agents leads to a change in color, making it useful for visual endpoint detection. This allows for the determination of the concentration of the reducing agent being analyzed in the titration process.


Why use h2so4 instead of hcl in titration of kmno4?

H2SO4 is typically used instead of HCl in the titration of KMnO4 because HCl can react with KMnO4 and form chlorine gas, which can interfere with the titration results. Additionally, H2SO4 provides the required acidic medium for the reaction to occur between KMnO4 and the analyte.


What is the function of potassium iodide in iodometric titration?

Potassium iodide is used in iodometric titration as a source of iodide ions. It reacts with iodine to form triiodide ions, which are then titrated with a standard solution of thiosulfate to determine the concentration of the oxidizing agent.


Why is it recommended to carryout iodometric titrations as quick as possible?

Iodometric titrations involve the titration of iodine with a reducing agent. Iodine is volatile and can escape into the air, which can lead to errors in the titration results. To minimize these errors, it is recommended to carry out iodometric titrations as quickly as possible to prevent the loss of iodine and ensure accurate results.


Why use NaHCO3 for iodometric titration?

Sodium bicarbonate (NaHCO3) is used in iodometric titration as a reaction enhancer to neutralize excess acids that may interfere with the redox reaction between iodine and the analyte being titrated. By maintaining a slightly basic pH, NaHCO3 helps stabilize the iodine solution, ensuring more accurate and reliable results.