electronegativity
It is called shielding or screening effect. Inner electrons shield the valence electrons from the positive charge of the nucleus, reducing the attractive force between them.
Electrons move around the nucleus due to the attractive force between the positively charged protons in the nucleus and the negatively charged electrons. This force, called electrostatic attraction, keeps the electrons in orbit around the nucleus.
The region between the nucleus and the electrons in an atom is called the electron cloud.
The attraction of the nucleus for the outer electrons in large atoms is lessened as a result of increased electron-electron repulsions. As the number of electrons increases, these repulsions cause the outer electrons to be further away from the nucleus, reducing the effective attraction. This phenomenon contributes to the shielding effect and explains the reduced attraction of the nucleus for outer electrons in large atoms.
The energy that attracts electrons to the nucleus of an atom is called the electromagnetic force. This force arises due to the interaction between the positively charged protons in the nucleus and the negatively charged electrons. It is responsible for holding the electrons in orbit around the nucleus.
•The shielding effect describes the decrease in attraction between an electron and the nucleus in any atom with more than one electron shell. •It is also referred to as the screening effect or atomic shielding. •Shielding electrons are the electrons in the energy levels between the nucleus and the valence electrons. They are called "shielding" electrons because they "shield" the valence electrons from the force of attraction exerted by the positive charge in the nucleus. Also, it has trends in the Periodic Table
The bridge between negative electrons and positive atoms is called a chemical bond. Chemical bonds form through the sharing or transfer of electrons between atoms to stabilize their electronic configurations. This interaction results in the attraction between the positively charged nucleus of one atom and the negatively charged electrons of another.
Electrons are the smallest and lightest of the particles in an atom. Electrons are in constant motion as they circle around the nucleus of that atom. Electrons are said to have a negative charge, which means that they seem to be surrounded by a kind of invisible force field. This is called an electrostatic field.
The best modern answer would involve quantum chemistry, but an easier to understand explanation is that the outermost electrons in fluorine are much closer to the nucleus that provides the attraction to hold the electrons and nucleus together as an atom than are the outermost electrons in iodine. This is sometimes called the "screening effect" of inner shell electrons that weakens the attraction between the nucleus and the outer shell electrons in large atoms such as iodine.
The electrons "orbit" the nucleus of an atom. They do so because they are attracted to the positive charge of the protons inside the nucleus. They do not usually leave the atom because of this attraction, and do not usually fall into the nucleus because they are moving.
An electromagnetic force attraction between opposite charges pulls atoms together, either between electrons and nuclei, or as the result of a dipole attraction.
The Force