Current I = V/R
V = 9V
R = 100ohm
I = 9V/100ohm = 90mA
No current flows through the battery. There is a current through the external circuit. I = E/R = 9/10 = 0.9 amperes.
Your current will be 30/R Amps. Where R is the resistance in Ohms.
The heat produced due to electric current through a resistance is i) directly proportional to the square of the current ii) directly proportional to the resistance value of the conductor iii) directly proportional to the time of flow of current.
The amount of heat produced in an electric wire depends on its resistance, the current flowing through it, and the duration for which the current flows. The formula for calculating heat generated in a wire is H = I^2 * R * t, where H is the heat produced, I is the current, R is the resistance, and t is the time.
To find the current flowing through a 16 V battery with a resistance of 5.1 ohms, you can use Ohm's Law, which states that current (I) equals voltage (V) divided by resistance (R). Thus, I = V/R = 16 V / 5.1 ohms ≈ 3.14 A. Therefore, approximately 3.14 amperes of current flows through the circuit.
A circuit with five resistors and a battery is constructed by connecting the resistors in series or parallel to create a closed loop for the flow of electric current from the battery through the resistors. The battery provides the energy for the current to flow through the resistors, which resist the flow of current. The arrangement of the resistors and the battery determines the overall resistance and current flow in the circuit.
Ohms are the unit of measurement for resistance, so an ohmmeter is a device that measures electrical resistance. A galvanometer measures the current flowing through the resistance, so the two are related. To convert a galvanometer into an ohmmeter, one needs an external battery.
Mass
The current flowing through the circuit can be calculated using Ohm's Law: I = V/R, where I is the current, V is the voltage (12 volts), and R is the resistance (25 ohms). Plugging in the values, the current would be 0.48 amperes.
A battery is rated to supply a certain number of volts. However, it actually supplies less, because they are "lost" as the current has to get out of the battery in the first place.(The battery has internal resistance)The amount of lost volts depends on the current being drawn:The less resistance a circuit has, the more current is drawn, because it's easier to flow.Example:If the circuit has little resistance, it draws a large current and the battery's internal resistance causes more lost volts.If the circuit has high resistance, it draws a small current and there are fewer lost volts.This is why when you short-circuit a battery (give it hardly any resistance to go through) it heats up and may explode. A large current is drawn and all the volts are used by the battery's internal resistance.
The net resistance of the circuit connected to the battery in Figure 1 is the total resistance that the current encounters when flowing through the circuit. It is calculated by adding up the individual resistances of all the components in the circuit.
I=V/R Which means: amps(current) = voltage divided by resistance. 20= V/20