The plant cells away from the sun grow faster than those on the sunny side causing the plant stem to bend toward the sun.
Capillary rise is influenced by the diameter of the capillary tube; specifically, narrower tubes exhibit a greater height of liquid rise due to stronger adhesive forces between the liquid and the tube walls relative to the cohesive forces within the liquid. This phenomenon is described by the capillary action equation, where the height of rise is inversely proportional to the diameter of the tube—smaller diameters lead to higher capillary rise. As the diameter increases, the height of the liquid column decreases, demonstrating the strong relationship between tube size and capillary action.
Capillary rise in plants helps in the transportation of water from roots to leaves. In insects, capillary action assists in the movement of liquids through small channels like tracheae and tracheoles. In sea sponges, capillary action helps in filtering and absorbing nutrients from water.
due to capillary action
capillary rise
capillary action
The 'capillary effect'. See the link.
Examples of capillarity include the ability of water to rise in a narrow glass tube (capillary action), the spread of ink on paper through capillary action, and the movement of water through the roots and stems of plants.
deduce an expression for height of a liquid in capillary tube. also write practical applications of capillary action.
That is capillary attraction.
4.6
5
The property of water that gives rise to capillary action is adhesion, which is the attraction between water molecules and the molecules of the material making up the capillary tube. This leads to water being pulled up the tube, against the force of gravity, due to the cohesive forces between water molecules.