I assume you mean this reaction.
2Mg + O2 --> 2MgO
16 or 160 ???
Either way the form is the same. We will use the 16 grams.
16 g O2 (1 mole O2/32 grams)(2 mole Mg/1 mole O2)
= 1.0 mole magnesium needed
======================
To calculate the number of grams of oxygen needed to react with 6.78 grams of ammonia, we first write out the balanced chemical equation for the reaction between ammonia (NH3) and oxygen (O2) to form nitrogen monoxide (NO) and water (H2O). Then we use the stoichiometry of the equation to find the molar ratio between ammonia and oxygen. Finally, we convert the mass of ammonia to moles and then use the molar ratio to find the mass of oxygen needed.
To find out how many grams of N2 are needed to produce 1.7 grams of NH3, you need to look at the balanced chemical equation for the reaction. For the reaction N2 + 3H2 -> 2NH3, the molar ratio of N2 to NH3 is 1:2. So you would need half the number of grams of N2 as NH3, which is 0.85 grams of N2.
To find the grams of nitrogen dioxide needed, first calculate the moles of nitrogen monoxide using Avogadro's number. Then, use the balanced chemical equation to determine the moles of nitrogen dioxide required. Finally, convert moles to grams using the molar mass of nitrogen dioxide.
One: The formula for magnesium fluoride is MgF2. Since each mole of fluorine molecules, which have the formula F2, contains two moles of fluorine atoms, one mole of each is the right ratio.
One chlorine atom is needed to form an ionic bond with one magnesium atom because magnesium can donate its two valence electrons to chlorine, which requires one more electron to complete its octet.
A lot
Two magnesium atoms would be needed to react with one bromine molecule. Magnesium has a +2 oxidation state, while bromine has a -1 oxidation state. This means that two magnesium atoms are needed to balance the charges when reacting with one bromine molecule.
cannot answer without more info.
63 g of water are needed.
mass H2O =49.2g
You need 145,337 g silver nitrate.
To determine the amount of oxygen, we first find the amount of magnesium by subtracting the given 20.0 grams of magnesium oxide from the total. Given that the molar mass of magnesium oxide is 40.3 g/mol and that of magnesium is 24.3 g/mol, we calculate the amount of oxygen by adjusting accordingly. This process gives us the weight ratio of magnesium oxide to oxygen.
The atomic mass of magnesium (Mg) is approximately 24.305 grams per mole.
4.00 grams of magnesium oxide is composed of 2.43 grams of magnesium (Mg) and 1.57 grams of oxygen (O). Therefore, to produce 4.00 grams of magnesium oxide, you would need 2.43 grams of magnesium.
If all the magnesium atoms are going to react, they will each need to combine with two oxygen atoms to form magnesium oxide. Therefore, for 100 magnesium atoms, you would need 200 oxygen atoms, which is equivalent to 100 oxygen molecules.
Theoretically the mass is 62,3018 g.
If 3 grams of magnesium are used to form 4 grams of magnesium oxide, then 1 gram of oxygen is used in the reaction. This means 1 gram of oxygen remains unused.