11 grams of silicon Si equals 0,39 moles.
To calculate the number of moles of carbon dioxide in 19 grams, divide the given mass by the molar mass of carbon dioxide, which is approximately 44 grams/mol. Therefore, 19 grams of carbon dioxide is equal to 19/44 ≈ 0.43 moles.
To determine the number of moles in 28.1 grams of silicon, you need to divide the given mass by the molar mass of silicon. The molar mass of silicon is 28.0855 g/mol. So, 28.1 grams of silicon is equal to 1 mole.
For this you need the atomic mass of Si. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel.2.61 grams Si / (28.1 grams) = .0963 moles Si
Ah, let's paint a happy little picture with some silicon! To find out how many moles are in 11 grams of silicon, we need to use the molar mass of silicon, which is about 28.09 grams per mole. So, by dividing 11 grams by the molar mass, we find there are approximately 0.39 moles of silicon in 11 grams. Just remember, in the world of chemistry, every little bit counts!
Look up the molecular weight of carbon dioxide in the periodic table. The formula for carbon dioxide is CO2, which means one atom of carbon and two atoms or oxygen per molecule of carbon dioxide. Carbon has molecular weight of 12. Oxygen molecular weight is 16. Total 12+16+16= 44 11 grams/44 grams/mole=0.25 moles of carbon The grams of water and combustion of 7.5 grams are totally irrelevant. They are only given to possibly confuse you.
To determine the number of moles in 5 grams of silicon dioxide (SiO2), you first need to calculate the molar mass of SiO2. The molar mass of SiO2 is 60.08 g/mol. Then, use the formula Moles = Mass / Molar mass to find that there are approximately 0.083 moles in 5 grams of SiO2.
To calculate the number of moles of carbon dioxide in 19 grams, divide the given mass by the molar mass of carbon dioxide, which is approximately 44 grams/mol. Therefore, 19 grams of carbon dioxide is equal to 19/44 ≈ 0.43 moles.
To determine the number of moles in 28.1 grams of silicon, you need to divide the given mass by the molar mass of silicon. The molar mass of silicon is 28.0855 g/mol. So, 28.1 grams of silicon is equal to 1 mole.
For this you need the atomic mass of Si. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel.2.61 grams Si / (28.1 grams) = .0963 moles Si
On the periodic table, sililcon (Si) has an atomic mass of about 28 grams per mole. You have 0.1 moles, so just move the decimal once to the left to get 2.8 grams of silicon.
Ah, let's paint a happy little picture with some silicon! To find out how many moles are in 11 grams of silicon, we need to use the molar mass of silicon, which is about 28.09 grams per mole. So, by dividing 11 grams by the molar mass, we find there are approximately 0.39 moles of silicon in 11 grams. Just remember, in the world of chemistry, every little bit counts!
10.00 X 10^28 = 1.0 X 1^29 ( always use scientific notation in chemistry ) 1.0 X 10^29 molecules silicon dioxide (1 mole SiO2/6.022 X 10^23)(2 mole O/1 mole SiO2)(16.0 grams/ 1 mole O) = 5.3 X 10^6 grams of oxygen
550 g of nitrogen dioxide is equal to 11,94 moles.
Look up the molecular weight of carbon dioxide in the periodic table. The formula for carbon dioxide is CO2, which means one atom of carbon and two atoms or oxygen per molecule of carbon dioxide. Carbon has molecular weight of 12. Oxygen molecular weight is 16. Total 12+16+16= 44 11 grams/44 grams/mole=0.25 moles of carbon The grams of water and combustion of 7.5 grams are totally irrelevant. They are only given to possibly confuse you.
To produce 1 mole of urea, 1 mole of carbon dioxide is needed. The molar mass of urea is 60 grams/mol, and the molar mass of carbon dioxide is 44 grams/mol. Therefore, to produce 125 grams of urea, 125 grams/60 grams/mol = 2.08 moles of urea is needed. This means 2.08 moles of carbon dioxide is needed, which is 2.08 moles * 44 grams/mol = 91.52 grams of carbon dioxide needed.
800 g oxygen are needed.
There are 2 atoms of oxygen in each molecule of silicon dioxide (SiO2). Therefore, in 0.100 moles of SiO2, there would be 0.100 moles * 2 atoms = 0.200 moles of oxygen atoms. Finally, since 1 mole of any element contains 6.022 x 10^23 atoms, there are (0.200 moles) * (6.022 x 10^23 atoms/mole) = 1.204 x 10^23 atoms of oxygen in 0.100 moles of silicon dioxide.