N2 + 3H2 -----> 2NH3 so 3 moles of hydrogen produce 2 moles of ammonia. Therefore 12.0 moles of hydrogen will produce 8 moles of ammonia.
The reaction of nitrogen with hydrogen to form ammonia is: N2 +3H2 = 2NH3 Therefore to make 10 moles of ammonia you need 5 moles N2 and 15 moles H2
The balanced chemical equation for the reaction between hydrogen and nitrogen to form ammonia is: 3H2 + N2 -> 2NH3 From the equation, it can be seen that 3 moles of hydrogen react to produce 2 moles of ammonia. Therefore, 18 moles of hydrogen can produce (2/3) x 18 = 12 moles of ammonia.
N2 + 3H2 --> 2NH3 You have been told, indirectly, that nitrogen limits and will drive the reaction. 3 moles N2 (2 moles NH3/1 mole N2) = 6 moles ammonia gas produced ========================
3H2 + N2 <------> 2NH3 is the balanced equation for Hydrogen and Nitrogen making ammonia. 3 moles of H2 produces two moles of ammonia and thus to make 6 moles requires 9 moles of Hydrogen.
Balanced equation first. N2 + 3H2 >> 2NH3 (hydrogen is limiting and drives the reaction ) 3.41 grams H2 (1mol/2.016g )(2mol NH3/3mol H2 )(17.034g NH3/1mol NH3 ) = 19.2 grams of ammonia produced ( this is called the Born-Haber process )
The reaction of nitrogen with hydrogen to form ammonia is: N2 +3H2 = 2NH3 Therefore to make 10 moles of ammonia you need 5 moles N2 and 15 moles H2
The balanced chemical equation for the reaction between hydrogen and nitrogen to form ammonia is: 3H2 + N2 -> 2NH3 From the equation, it can be seen that 3 moles of hydrogen react to produce 2 moles of ammonia. Therefore, 18 moles of hydrogen can produce (2/3) x 18 = 12 moles of ammonia.
The balanced chemical equation for the formation of ammonia from nitrogen and hydrogen is N2 + 3H2 → 2NH3. From the equation, it can be seen that 1 mole of nitrogen reacts with 3 moles of hydrogen to produce 2 moles of ammonia. Calculate the moles of nitrogen and hydrogen provided, determine the limiting reactant, and then use stoichiometry to find the grams of ammonia that can be produced.
The reaction between hydrogen and ammonia to form ammonia is 3H2 + N2 → 2NH3. To find the amount of ammonia produced when 6.00g of hydrogen reacts, first convert the mass of hydrogen to moles using its molar mass. Then, use the mole ratio from the balanced equation to find the moles of ammonia produced, and finally, convert this to grams using the molar mass of ammonia.
8,038 moles of ammonia were produced.
This is based on calculations too. It contains 18 hydrogen moles.
The balanced chemical equation for the reaction between ammonia (NH3) and water (H2O) is: 4NH3 + 5O2 → 4NO + 6H2O. This means that for every 4 moles of ammonia, 6 moles of water are produced. Therefore, if 2 moles of ammonia are used, 3 moles of water vapor can be produced.
Ther answer is none! ammonium bromide is made from hydrogen bromide and ammonia NH3 + HBr = NH4Br i mole of each makes 1mole of ammonium salt.
N2 + 3H2 --> 2NH3 You have been told, indirectly, that nitrogen limits and will drive the reaction. 3 moles N2 (2 moles NH3/1 mole N2) = 6 moles ammonia gas produced ========================
Since ammonia has a chemical formula of NH3, it contains one mole of nitrogen and three moles of hydrogen per mole of ammonia. Therefore, 3 moles of ammonia contain 3 moles of nitrogen and 9 moles of hydrogen atoms.
How many moles of NH3 are produced when 1.2 mol of nitrogen reacts with hydrogen?
3H2 + N2 <------> 2NH3 is the balanced equation for Hydrogen and Nitrogen making ammonia. 3 moles of H2 produces two moles of ammonia and thus to make 6 moles requires 9 moles of Hydrogen.