what is the procedure of standardization of Sodium thiosulphate (0.025N)with potassum dichromate (0.25N)
Starch acts as an indicator for the endpoint of the reaction between sodium thiosulphate and potassium iodate, as it forms a blue-black complex with iodine. This color change helps identify when all the iodine has been liberated from the reaction. This method is commonly used in titrations to determine the concentration of the sodium thiosulphate solution accurately.
The equation between potassium iodate (KIO3) and sodium thiosulfate (Na2S2O3) involves a redox reaction. In the presence of an acid, potassium iodate is reduced to iodine (I2), while sodium thiosulfate is oxidized to form sodium tetrathionate (Na2S4O6). The balanced chemical equation for this reaction is 5Na2S2O3 + 2KIO3 + 8HCl → 5Na2S4O6 + 2I2 + 2KCl + 6H2O.
In iodometry sodium thiosulphate is used because it is standardized by potassium dichromate and it is the best and relaible way to standardized sodium thiosulphate using iodometric titration. Infact sodium thiosulphate is also standardized by iodimetry. The difference between both of them is only of iodine. In iodometry iodine gas is liberated that will further react with sodium thiosulphate but in iodimetry standard solution of iodine is used.
The chemical symbol for sodium thiosulphate (hypo) is Na2S2O3•5H2O.
Sodium periodate.See the Web Links to the left of this answer for more information.
Starch acts as an indicator for the endpoint of the reaction between sodium thiosulphate and potassium iodate, as it forms a blue-black complex with iodine. This color change helps identify when all the iodine has been liberated from the reaction. This method is commonly used in titrations to determine the concentration of the sodium thiosulphate solution accurately.
Starch
The equation between potassium iodate (KIO3) and sodium thiosulfate (Na2S2O3) involves a redox reaction. In the presence of an acid, potassium iodate is reduced to iodine (I2), while sodium thiosulfate is oxidized to form sodium tetrathionate (Na2S4O6). The balanced chemical equation for this reaction is 5Na2S2O3 + 2KIO3 + 8HCl → 5Na2S4O6 + 2I2 + 2KCl + 6H2O.
Iodine is added to salt as potassium (sodium) iodide or potassium (sodium) iodate. An iodine deficiency is a source of thyroide diseases or can lead to idiocy.
Standardization of sodium thiosulfate uses potassium iodate with excess potassium iodide and acidified. Iodine is liberated and that is titrated with sodium thiosulfate. KIO3 + 5KI + 3H2SO4 -----> 3K2SO4 + 3H2O + 3 I2 I2 + 2Na2S2O3 -------> 2NaI + Na2S4O6 So 1 mole of KIO3 produces 3 moles of Iodine. 1 moles of iodine reacts with 2 moles of thiosulfate. So 6 moles of sodium thiosulfate react with 1 mole of potassium iodate KIO3.
Iodine in the iodized salt exist as iodine salts (potassium iodide/iodate or sodium iodide/iodate).These salts are dissolved and dissociated in the organism as NaCl.
In redox titration using sodium thiosulfate and potassium iodate, the iodate ion (IO3-) is reduced to iodine (I2) by thiosulfate ion (S2O32-). The iodine formed is then titrated with sodium thiosulfate until the endpoint is reached, indicated by a color change from yellow to colorless when all the iodine is reacted. This method is commonly used to determine the concentration of oxidizing agents in a sample.
Sodium iodate is NaIO3.
Generally used are potassium iodide or iodate; rarely used sodium iodide or iodate. Also added is an anticaking agent.
Yes, iodized salt is a mixture of sodium chloride (common salt) and a small amount of potassium iodide, which is added to prevent iodine deficiency in the diet. It helps support thyroid function and prevent related health issues.
Added substanstes to table salt are iodine (as potassium/sodium iodate or iodide) and an anticaking substance.
Iodised salt (sodium chloride) contain iodine (as potassium/sodium iodide or potassium/sodium iodate). The concentration of iodine is 20 +/- 5 mg/kg. Iodised salt is recommended to avoid idiocy.