Differences in temperature on earth
Convection currents resulting from uneven heating of Earth's surface form winds. Warm air rises at the equator, moves towards the poles at high altitude, cools, and sinks back towards the surface, creating global wind patterns.
Convection currents form when a fluid is heated from the bottom, causing it to rise and create a circulating flow. If a fluid is heated from the top, there is no temperature difference to drive the circulation, preventing convection currents from forming. Heat needs to be applied at the bottom to induce the necessary buoyancy-driven flow for convection currents to occur.
Convection currents form in the atmosphere and oceans when the Sun heats the Earth. As the air and water near the Earth's surface warm up, they become less dense and rise, creating a circulation pattern where cooler air or water replaces them.
Convection currents are the ones that can form in the geosphere and carry heat from the Earth's mantle towards the surface. These currents move molten rock in the mantle due to differences in temperature and density, driving the movement of tectonic plates and influencing volcanic activity.
Yes, convection currents play a role in tornado formation. Tornadoes typically form when warm, moist air rises and interacts with cooler, drier air aloft, creating a rotating column of air. This convection process is a key factor in the development of tornadoes.
Solar energy
Surface currents are caused by wind, and affected by the rotation of the Earth and the gravity of the moon (tides). When the oceans are deep, convection within the layers can also affect the flow of currents. * While wind currents are greatly affected by uneven heating of the Earth's surface, there is no corresponding heating of the ocean bottom by the Sun. So currents do not form spontaneously at depth.
Surface currents are caused by wind, and affected by the rotation of the Earth and the gravity of the moon (tides). When the oceans are deep, convection within the layers can also affect the flow of currents. * While wind currents are greatly affected by uneven heating of the Earth's surface, there is no corresponding heating of the ocean bottom by the Sun. So currents do not form spontaneously at depth.
Surface currents are caused by wind, and affected by the rotation of the Earth and the gravity of the moon (tides). When the oceans are deep, convection within the layers can also affect the flow of currents. * While wind currents are greatly affected by uneven heating of the Earth's surface, there is no corresponding heating of the ocean bottom by the Sun. So currents do not form spontaneously at depth.
Convection currents resulting from uneven heating of Earth's surface form winds. Warm air rises at the equator, moves towards the poles at high altitude, cools, and sinks back towards the surface, creating global wind patterns.
has to be cold
Convection currents.
which diagram correctly indicates why convection currents form in water when water is heated
because of differences in pressure and density in a fluid
Heat Energy
Surface currents are caused by wind, and affected by the rotation of the Earth and the gravity of the moon (tides). When the oceans are deep, convection within the layers can also affect the flow of currents. * While wind currents are greatly affected by uneven heating of the Earth's surface, there is no corresponding heating of the ocean bottom by the Sun. So currents do not form spontaneously at depth.
Surface currents are caused by wind, and affected by the rotation of the Earth and the gravity of the moon (tides). When the oceans are deep, convection within the layers can also affect the flow of currents. * While wind currents are greatly affected by uneven heating of the Earth's surface, there is no corresponding heating of the ocean bottom by the Sun. So currents do not form spontaneously at depth.