answersLogoWhite

0

An adiabiatic lapse rate is the rate of the decrease of temperature with height of a parcel of dry air lifted upward through the atmosphere with no addition or deletion of heat.

User Avatar

Wiki User

10y ago

What else can I help you with?

Continue Learning about Earth Science

Why is saturated adiabatic lapse rate a lesser than dry adiabatic lapse rate?

The saturated adiabatic lapse rate is lower than the dry adiabatic lapse rate because during the process of condensation, heat is released into the atmosphere, which partially offsets the cooling effect of rising air. This release of heat makes the cooling rate of saturated air less than that of dry air as it ascends through the atmosphere.


Is the adiabatic lapse rate higher when its cloudy or not?

There are two types of adiabatic lapse rates...wet and dry. (wet is also referred to as saturated or moist) To the extent that the cloudiness your question refers to represents saturated air, then no, the wet adiabatic lapse rate would be lower (approximately 1.5C/1000') than the dry adiabatic lapse rate (approximately 3C/1000').


Why is the saturated adiabatic lapse rate lower than the unsaturated adiabatic lapse rate?

The saturated adiabatic lapse rate is lower than the unsaturated adiabatic lapse rate because when air is saturated with moisture, the release of latent heat from condensation offsets some of the cooling that would normally occur as the air rises. This results in a slower rate of temperature decrease with height compared to unsaturated air.


The rate of temperature change 0.6 degrees C for every 100 m of saturated air as it rises or falls is the moist adiabatic?

That statement describes the environmental lapse rate of saturated air, also known as the moist adiabatic lapse rate. This rate signifies how quickly the temperature of saturated air changes as it ascends or descends through the atmosphere under adiabatic conditions. The specific value of 0.6 degrees Celsius per 100 meters is a typical approximation for the moist adiabatic lapse rate.


Why is there a difference between the dry and moist adiabatic lapse rates?

Air that is rising at the dry adiabatic rate can simply cool at the rate at which the decreasing pressure forces it to. Once it cools to its dew point at the lifting condensation level, it must condense some of its moisture in order to cool anymore (it is already saturated at this point). Condensation is a process that releases latent heat into the atmosphere, warming the air. Therefore, this heat released counteracts some of the adiabatic cooling that continues to take place as the air rises, and the net effect is a rate of cooling that is reduced. This is the saturated (or moist) adiabatic lapse rate.

Related Questions

Why is saturated adiabatic lapse rate a lesser than dry adiabatic lapse rate?

The saturated adiabatic lapse rate is lower than the dry adiabatic lapse rate because during the process of condensation, heat is released into the atmosphere, which partially offsets the cooling effect of rising air. This release of heat makes the cooling rate of saturated air less than that of dry air as it ascends through the atmosphere.


What is the rate of cooling as you increase in elevation?

The rate at which adiabatic cooling occurs with increasing altitude for wet air (air containing clouds or other visible forms of moisture) is called the wet adiabatic lapse rate, the moist adiabatic lapse rate, or the saturated adiabatic lapse rate.


Is the adiabatic lapse rate higher when its cloudy or not?

There are two types of adiabatic lapse rates...wet and dry. (wet is also referred to as saturated or moist) To the extent that the cloudiness your question refers to represents saturated air, then no, the wet adiabatic lapse rate would be lower (approximately 1.5C/1000') than the dry adiabatic lapse rate (approximately 3C/1000').


Stability prevails when the environmental lapse rate is?

Stability prevails when the environmental lapse rate is less than the adiabatic lapse rate. This means that the temperature of the surrounding air decreases at a slower rate with altitude compared to the dry or moist adiabatic lapse rates, resulting in a more stable atmosphere.


Why is the saturated adiabatic lapse rate lower than the unsaturated adiabatic lapse rate?

The saturated adiabatic lapse rate is lower than the unsaturated adiabatic lapse rate because when air is saturated with moisture, the release of latent heat from condensation offsets some of the cooling that would normally occur as the air rises. This results in a slower rate of temperature decrease with height compared to unsaturated air.


How does the moist adiabatic lapse rate compare with the dry-adiabatic lapse rate?

environmental lapse rate involves the actual temperature of the atmosphere at various heights. adiabatic cooling is the cooling of air caused when air is not allowed to expand or compress.


What is the rate of adiabatic temperature change in saturated air?

The rate of adiabatic temperature change in saturated air is approximately 0.55°C per 100 meters of elevation gain, known as the dry adiabatic lapse rate. If the air is saturated and undergoing adiabatic cooling, the rate is around 0.5°C per 100 meters, referred to as the saturated adiabatic lapse rate.


The rate of temperature change 0.6 degrees C for every 100 m of saturated air as it rises or falls is the moist adiabatic?

That statement describes the environmental lapse rate of saturated air, also known as the moist adiabatic lapse rate. This rate signifies how quickly the temperature of saturated air changes as it ascends or descends through the atmosphere under adiabatic conditions. The specific value of 0.6 degrees Celsius per 100 meters is a typical approximation for the moist adiabatic lapse rate.


What must the environmental lapse be in order for stability to prevail?

less than the wet adiabatic rate.


When the environmental lapse rate is between the dry and moist adiabatic lapse rates conditions are described as what?

When the environmental lapse rate is between the dry and moist adiabatic lapse rates, conditions are described as conditionally unstable. This means that the atmosphere is stable when unsaturated and unstable when saturated, indicating the potential for convective storms to develop under the right conditions.


What is saturated adiabatic lapse rate?

The Saturated adiabatic lapse rate is :All air has a moisture content and when a parcel of air heated by its surroundings starts to rise at the dry adiabatic lapse rate it rises until its temperature reaches that of the dew point where its vapour content starts to condense out as tiny liquid water droplets and normally forms the base of a cloud. As this 'heated' parcel of air is still warmer than the environmental lapse rate (circa 1C/1000ft) latent heat is being released as it still continues to rise but now at a reduced rate - it is this reduced rate @1.5C/1000ft that is known as the saturated adiabatic lapse rate. It will cease rising when the environmental temperatures level out and this forms or terminates resulting as the top of the cloud. Meteorologists and pilots use this environmental lapse rate and known dew point temperature to work out the base and tops of cloud for regional and airport forecasts.


Why is there a difference between the dry and moist adiabatic lapse rates?

Air that is rising at the dry adiabatic rate can simply cool at the rate at which the decreasing pressure forces it to. Once it cools to its dew point at the lifting condensation level, it must condense some of its moisture in order to cool anymore (it is already saturated at this point). Condensation is a process that releases latent heat into the atmosphere, warming the air. Therefore, this heat released counteracts some of the adiabatic cooling that continues to take place as the air rises, and the net effect is a rate of cooling that is reduced. This is the saturated (or moist) adiabatic lapse rate.