answersLogoWhite

0

environmental lapse rate involves the actual temperature of the atmosphere at various heights.

adiabatic cooling is the cooling of air caused when air is not allowed to expand or compress.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is the rate of cooling as you increase in elevation?

The rate at which adiabatic cooling occurs with increasing altitude for wet air (air containing clouds or other visible forms of moisture) is called the wet adiabatic lapse rate, the moist adiabatic lapse rate, or the saturated adiabatic lapse rate.


Stability prevails when the environmental lapse rate is?

Stability prevails when the environmental lapse rate is less than the adiabatic lapse rate. This means that the temperature of the surrounding air decreases at a slower rate with altitude compared to the dry or moist adiabatic lapse rates, resulting in a more stable atmosphere.


When the environmental lapse rate is between the dry and moist adiabatic lapse rates conditions are described as what?

When the environmental lapse rate is between the dry and moist adiabatic lapse rates, conditions are described as conditionally unstable. This means that the atmosphere is stable when unsaturated and unstable when saturated, indicating the potential for convective storms to develop under the right conditions.


Why is the lapse rate of moist air less than that of the dry air?

I think maritime polarWhen dry air is lifted, the temperature drops at the dry adiabatic lapse rate. If the lifted air is moist and eventually becomes saturated, then water vapor will start to condense. Energy is released when water vapor turns from solid to liquid (opposite of needing to add energy to liquid to make it evaporate, such as when you have to turn up the temperature on a stove to boil water). This release of energy - the "latent heat of vaporization" - warms the air, so the lapse rate is less for saturated air.


Which property remains unchanged during an adiabatic saturation moist air?

Wet bulb temperature

Related Questions

Is the adiabatic lapse rate higher when its cloudy or not?

There are two types of adiabatic lapse rates...wet and dry. (wet is also referred to as saturated or moist) To the extent that the cloudiness your question refers to represents saturated air, then no, the wet adiabatic lapse rate would be lower (approximately 1.5C/1000') than the dry adiabatic lapse rate (approximately 3C/1000').


What is the rate of cooling as you increase in elevation?

The rate at which adiabatic cooling occurs with increasing altitude for wet air (air containing clouds or other visible forms of moisture) is called the wet adiabatic lapse rate, the moist adiabatic lapse rate, or the saturated adiabatic lapse rate.


The rate of temperature change 0.6 degrees C for every 100 m of saturated air as it rises or falls is the moist adiabatic?

That statement describes the environmental lapse rate of saturated air, also known as the moist adiabatic lapse rate. This rate signifies how quickly the temperature of saturated air changes as it ascends or descends through the atmosphere under adiabatic conditions. The specific value of 0.6 degrees Celsius per 100 meters is a typical approximation for the moist adiabatic lapse rate.


Stability prevails when the environmental lapse rate is?

Stability prevails when the environmental lapse rate is less than the adiabatic lapse rate. This means that the temperature of the surrounding air decreases at a slower rate with altitude compared to the dry or moist adiabatic lapse rates, resulting in a more stable atmosphere.


When the environmental lapse rate is between the dry and moist adiabatic lapse rates conditions are described as what?

When the environmental lapse rate is between the dry and moist adiabatic lapse rates, conditions are described as conditionally unstable. This means that the atmosphere is stable when unsaturated and unstable when saturated, indicating the potential for convective storms to develop under the right conditions.


What is an adiabatic lapse rate?

The adiabatic lapse rate refers to the rate at which temperature changes with altitude in a parcel of dry or moist air when there is no exchange of heat with the surroundings. The dry adiabatic lapse rate is approximately 10°C per 1000 meters for dry air, while the moist adiabatic lapse rate varies with humidity but is generally lower due to the release of latent heat during condensation.


Why is there a difference between the dry and moist adiabatic lapse rates?

Air that is rising at the dry adiabatic rate can simply cool at the rate at which the decreasing pressure forces it to. Once it cools to its dew point at the lifting condensation level, it must condense some of its moisture in order to cool anymore (it is already saturated at this point). Condensation is a process that releases latent heat into the atmosphere, warming the air. Therefore, this heat released counteracts some of the adiabatic cooling that continues to take place as the air rises, and the net effect is a rate of cooling that is reduced. This is the saturated (or moist) adiabatic lapse rate.


The rate of temperature change (0.6 degrees C for every 100 m) of saturated air as it rises or falls is the moist-adiabatic?

lapse rate


What is the normal environmental lapse rate?

Usually somewhere between moist and dry adiabatic lapse rates: 6.5 C/1000 m - 10C/1000 m. It varies though seasonally, with location, and with time of day.


The lapse rate for moist air is lower than for dry air because?

- Moist air has water vapor in it. - As a moist air parcel rises, the water vapor will condense (latent heat of condensation) - latent heat is released, meaning a temperature increase occurs within that air parcel, effectively dampening its lapse rate. Thus, the latent heat of condensation is working to decrease the lapse rate because sensible heat is being released in the process; its called the Moist Adiabatic Rate (MAR) In contrast, the Dry Adiabatic Rate (DAR) considered for Dry air (no water vapor) does not involve condensation, and thus no latent heat is released; meaning the lapse rate is unaffected.


Why is the lapse rate of moist air less than that of the dry air?

I think maritime polarWhen dry air is lifted, the temperature drops at the dry adiabatic lapse rate. If the lifted air is moist and eventually becomes saturated, then water vapor will start to condense. Energy is released when water vapor turns from solid to liquid (opposite of needing to add energy to liquid to make it evaporate, such as when you have to turn up the temperature on a stove to boil water). This release of energy - the "latent heat of vaporization" - warms the air, so the lapse rate is less for saturated air.


Explain why the lapse rate of moist air is less than that of dry air?

I think maritime polarWhen dry air is lifted, the temperature drops at the dry adiabatic lapse rate. If the lifted air is moist and eventually becomes saturated, then water vapor will start to condense. Energy is released when water vapor turns from solid to liquid (opposite of needing to add energy to liquid to make it evaporate, such as when you have to turn up the temperature on a stove to boil water). This release of energy - the "latent heat of vaporization" - warms the air, so the lapse rate is less for saturated air.