Radioactive decay of long-lived isotopes in the Earth's deep interior is the source of heat which causes convection currents in the magma which causes tectonic plates to move.
The mantle is inferred to have convection currents that cause tectonic plates to move. Heat from within the Earth creates these currents, leading to the movement of the rigid plates on the Earth's surface.
The mantle is inferred to have convection currents that cause tectonic plates to move. Heat from the Earth's core causes these currents, which transfer heat to the surface and drive the movement of the tectonic plates.
The asthenosphere, which is a partially molten layer in the upper mantle, has convection currents that cause tectonic plates to move due to the heat-driven circulation of rock material. These convection currents are responsible for the continuous motion of tectonic plates on the Earth's surface.
No, convection currents in the mantle are the primary driving force behind the movement of tectonic plates. These currents are generated by heat from the Earth's core, causing movement in the mantle that in turn drags and moves the overlying tectonic plates.
Geologists believe that the movement of the Earth's plates is caused by the heat from the Earth's core creating convection currents in the mantle. These currents cause the plates to slowly drift and move over time, a process known as plate tectonics.
the plates are driven across the surface by convection currents within the plastic rock of the asthenosphere.
The mantle is inferred to have convection currents that cause tectonic plates to move. Heat from within the Earth creates these currents, leading to the movement of the rigid plates on the Earth's surface.
The mantle is inferred to have convection currents that cause tectonic plates to move. Heat from the Earth's core causes these currents, which transfer heat to the surface and drive the movement of the tectonic plates.
It is the mantle that is inferred to have convection currents that cause tectonic plates to move. Heat from the Earth's core creates these currents, which drive the movement of the rigid plates on the Earth's surface.
The asthenosphere, which is a partially molten layer in the upper mantle, has convection currents that cause tectonic plates to move due to the heat-driven circulation of rock material. These convection currents are responsible for the continuous motion of tectonic plates on the Earth's surface.
Tectonic plates are driven by the movement of material in the Earth's mantle. This movement is caused by heat from the Earth's core, which creates convection currents within the mantle. As the currents rise and cool, they push the tectonic plates apart, causing them to move across the Earth's surface.
No, convection currents in the mantle are the primary driving force behind the movement of tectonic plates. These currents are generated by heat from the Earth's core, causing movement in the mantle that in turn drags and moves the overlying tectonic plates.
Geologists believe that the movement of the Earth's plates is caused by the heat from the Earth's core creating convection currents in the mantle. These currents cause the plates to slowly drift and move over time, a process known as plate tectonics.
The process that drives the movement of lithospheric plates across the surface of the Earth is called plate tectonics. This movement is mainly driven by the heat generated from radioactive decay in the Earth's interior, which creates convection currents in the semi-fluid asthenosphere beneath the lithosphere. These convection currents cause the lithospheric plates to move, leading to phenomena like seafloor spreading, subduction, and continental drift.
The movement of tectonic plates is primarily caused by convection currents in the Earth's mantle. Heat from the Earth's core creates these currents, which cause the plates to slowly move and interact with each other. This movement leads to various geological phenomena such as earthquakes and volcanic activity.
convection currents cause movement in the asthenosphere
Radioactive decay within the deep interior of the Earth causes convection currents in the magma of the mantle. The continental plates float on top of the mantle, and the currents push them. That is why continents drift.