Li2CO3
Li atomic weight is 6.94
C atomic weight is 12.00
O atomic weight is 16.0
Li2 has 6.94x2=13.88
C has 12.00x1=12
O3 has 16.00x3=48
13.88
+12.00
+48.00
-----------
73.88 is the molecular weight....
Sodium iodide has the highest molar mass among the compounds listed, with a molar mass of 149.89 g/mol. Sodium bromide has a molar mass of 102.89 g/mol, sodium chloride has a molar mass of 58.44 g/mol, lithium bromide has a molar mass of 86.85 g/mol, and lithium fluoride has a molar mass of 25.94 g/mol.
Lithium has a molar mass of 6.94 g/mol. Oxygen has a molar mass of 16.00 g/mol. Since Lithium Oxide has 2 Lithium atoms, the molar mass is: (6.94 x 2) + 16.00 = 29.88 g/mol.
The molar mass of aluminum chloride (AlCl3) is approximately 133.34 g/mol.
To find the number of moles in 51 grams of lithium phosphate, you first need to determine its molar mass. The molar mass of lithium phosphate (Li3PO4) is 115.79 g/mol. To find the number of moles, divide the given mass by the molar mass: 51 g / 115.79 g/mol ≈ 0.44 moles of lithium phosphate.
The molar mass aluminum chloride is 133,34 g (for the anhydrous salt).
Sodium iodide has the highest molar mass among the compounds listed, with a molar mass of 149.89 g/mol. Sodium bromide has a molar mass of 102.89 g/mol, sodium chloride has a molar mass of 58.44 g/mol, lithium bromide has a molar mass of 86.85 g/mol, and lithium fluoride has a molar mass of 25.94 g/mol.
To find the number of moles in 55g of lithium chloride, we first need to calculate the molar mass of lithium chloride, which is approximately 42.39 g/mol. Then, we divide the mass given (55g) by the molar mass to get moles. Therefore, 55g of lithium chloride is approximately 1.30 moles.
Lithium's molar mass is 6.941g/mol. To find the molar mass of an element, take the atomic weight on the periodic table in grams.
Lithium has a molar mass of 6.94 g/mol. Oxygen has a molar mass of 16.00 g/mol. Since Lithium Oxide has 2 Lithium atoms, the molar mass is: (6.94 x 2) + 16.00 = 29.88 g/mol.
The molar mass of sodium chloride is 58,44.
The molar mass of lithium selenide (Li2Se) can be calculated by adding the atomic masses of lithium and selenium together. The atomic mass of lithium is approximately 6.94 g/mol, and the atomic mass of selenium is approximately 78.97 g/mol. Therefore, the molar mass of lithium selenide is approximately 163.85 g/mol.
The molar mass of lithium oxide (Li2O) is 29.88 g/mol.
The molar mass of anhydrous aluminum chloride is 133,34 grams.
The molar mass of Li = 6.941 g/mol
Lithium chloride is not transformed in calcium chloride.
To find the number of moles in 1.9 g of lithium, you need to divide the mass of lithium by its molar mass. The molar mass of lithium is approximately 6.94 g/mol. So, 1.9 g / 6.94 g/mol ≈ 0.274 moles of lithium.
you mean to say chlorine... and it 35.45g/mol