answersLogoWhite

0


Best Answer

A large "test charge" would influence the field you want to measure.

User Avatar

Reynold Berge

Lvl 10
2y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: When probing the electric field direction it is necessary to specify that the magnitude of the test charge be very small?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Earth Science

Why was sputnik7 lanched to Venus?

The Sputnik 7 was the first Soviet attempt at a probing of Venus. The probe successfully launched into Earth's orbit on February the 4th of 1961. The Venera probe was suppose to be launched towards a landing on Venus after it orbited Earth one time but the ignition failed.


How many miles is the earths mantle?

The mantle is a part of a terrestrial planet or other rocky body large enough to have differentiationby density. The interior of the Earth, similar to the other terrestrial planets, is chemically divided into layers. The mantle is a highly viscous layer between the crust and the outer core. Earth's mantle is a rocky shell about 2,900 km (1,800 mi) thick[1]that constitutes about 84% of Earth's volume.[2]It is predominantly solid and encloses the iron-rich hot core, which occupies about 15% of Earth's volume.[2][3]Past episodes of melting and volcanism at the shallower levels of the mantle have produced a thin crust of crystallized melt products near the surface, upon which we live.[4]Information about structure and composition of the mantle either result from geophysical investigation or from direct geoscientific analyses on Earth mantle derived xenoliths.Two main zones are distinguished in the upper mantle: the inner asthenospherecomposed of plasticflowing rock about 200 km thick,[5]and the lowermost part of thelithospherecomposed of rigid rock about 50 to 120 km thick.[6]A thin crust, the upper part of the lithosphere, surrounds the mantle and is about 5 to 75 km thick.[7]In some places under the ocean the mantle is actually exposed on the surface of the Earth.[8]There are also a few places on land where mantle rock has been pushed to the surface by tectonic activity, most notably the Tablelands region of Gros Morne National Park in the Canadianprovince of Newfoundland and Labrador.Contents[hide] 1 Structure2 Characteristics3 Temperature4 Movement5 Exploration6 See also7 Notes8 References9 External links[edit]StructureThe mantle is divided into sections which are based upon results from seismology. These layers (and their depths) are the following: the upper mantle (starting at the Moho, or base of the crust around 7 to 35 km downward to 410 km),[9]the transition zone (410-660 km), the lower mantle (660-2891 km), and anomalous core-mantle boundary with a variable thickness (on average ~200 km thick).[4][10][11][12]The top of the mantle is defined by a sudden increase in seismic velocity, which was first noted by Andrija Mohorovičić in 1909; this boundary is now referred to as the "Mohorovičić discontinuity" or "Moho".[10][13]The uppermost mantle plus overlying crust are relatively rigid and form the lithosphere, an irregular layer with a maximum thickness of perhaps 200 km. Below the lithosphere the upper mantle becomes notably more plastic. In some regions below the lithosphere, the seismic velocity is reduced; this so-called low-velocity zone (LVZ) extends down to a depth of several hundred km. Inge Lehmanndiscovered a seismic discontinuity at about 220 km depth;[14]although this discontinuity has been found in other studies, it is not known whether the discontinuity is ubiquitous. The transition zone is an area of great complexity; it physically separates the upper and lower mantle.[12]Very little is known about the lower mantle apart from that it appears to be relatively seismically homogeneous. The D" layer at the core-mantle boundary separates the mantle from the core.[4][10][edit]CharacteristicsThe mantle differs substantially from the crust in its mechanical properties which is the direct consequence of chemical composition change (expressed as different mineralogy). The distinction between crust and mantle is based on chemistry, rock types, rheology and seismiccharacteristics. The crust is a solidification product of mantle derived melts, expressed as various degrees of partial melting products during geologic time. Partial melting of mantle material is believed to cause incompatible elements to separate from the mantle, with less dense material floating upward through pore spaces, cracks, or fissures, that would subsequently cool and solidify at the surface. Typical mantle rocks have a higher magnesium to iron ratio and a smaller proportion of silicon and aluminiumthan the crust. This behavior is also predicted by experiments that partly melt rocks thought to be representative of Earth's mantle.Mapping the interior of the Earthwithearthquakewaves.Mantle rocks shallower than about 410 km depth consist mostly of olivine, pyroxenes, spinel-structure minerals, and garnet;[12]typical rock types are thought to be peridotite,[12]dunite(olivine-rich peridotite), and eclogite. Between about 400 km and 650 km depth, olivine is not stable and is replaced by high pressure polymorphswith approximately the same composition: one polymorph is wadsleyite(also called beta-spinel type), and the other is ringwoodite(a mineral with the gamma-spinelstructure). Below about 650 km, all of the minerals of the upper mantle begin to become unstable. The most abundant minerals present, the silicate perovskites, have structures (but not compositions) like that of the mineral perovskitefollowed by the magnesium/iron oxide ferropericlase.[15]The changes in mineralogy at about 400 and 650 km yield distinctive signatures in seismic records of the Earth's interior, and like the moho, are readily detected using seismic waves. These changes in mineralogy may influence mantle convection, as they result in density changes and they may absorb or release latent heat as well as depress or elevate the depth of the polymorphic phase transitions for regions of different temperatures. The changes in mineralogy with depth have been investigated by laboratory experiments that duplicate high mantle pressures, such as those using the diamond anvil.[16]Composition of Earth's mantle in weight percent[17][citation needed] Element Amount Compound Amount O 44.8 Si 21.5 SiO2 46 Mg 22.8 MgO 37.8 Fe 5.8 FeO 7.5 Al 2.2 Al2O3 4.2 Ca 2.3 CaO 3.2 Na 0.3 Na2O 0.4 K 0.03 K2O 0.04 Sum 99.7 Sum 99.1 The inner core is solid, the outer core is liquid, and the mantle solid/plastic. This is because of the relative melting points of the different layers (nickel-iron core, silicate crust and mantle) and the increase in temperature and pressure as depth increases. At the surface both nickel-iron alloys and silicates are sufficiently cool to be solid. In the upper mantle, the silicates are generally solid (localised regions with small amounts of melt exist); however, as the upper mantle is both hot and under relatively little pressure, the rock in the upper mantle has a relatively low viscosity. In contrast, the lower mantle is under tremendous pressure and therefore has a higher viscosity than the upper mantle. The metallic nickel-iron outer core is liquid because of the high pressure and temperature. As the pressure exponentially increases, the nickel-iron inner core becomes solid because the melting point of iron increases dramatically at these high pressures.[18][edit]TemperatureIn the mantle, temperatures range between 500 to 900 °C (932 to 1,652 °F) at the upper boundary with the crust; to over 4,000 °C (7,230 °F) at the boundary with the core.[18]Although the higher temperatures far exceed the melting points of the mantle rocks at the surface (about 1200 °C for representative peridotite), the mantle is almost exclusively solid.[18]The enormous lithostatic pressure exerted on the mantle prevents melting, because the temperature at which melting begins (the solidus) increases with pressure.[edit]MovementThis figure is a snapshot of one time-step in a model of mantle convection. Colors closer to red are hot areas and colors closer to blue are cold areas. In this figure, heat received at the core-mantle boundaryresults in thermal expansion of the material at the bottom of the model, reducing its density and causing it to send plumes of hot material upwards. Likewise, cooling of material at the surface results in its sinking.Because of the temperature difference between the Earth's surface and outer core and the ability of the crystalline rocks at high pressure and temperature to undergo slow, creeping, viscous-like deformation over millions of years, there is a convectivematerial circulation in the mantle.[10]Hot material upwells, while cooler (and heavier) material sinks downward. Downward motion of material occurs at convergent plate boundaries called subduction zones. Locations on the surface that lie over plumes are predicted to have high elevation (because of the buoyancy of the hotter, less-dense plume beneath) and to exhibit hot spotvolcanism. The volcanism often attributed to deep mantle plumes is alternatively explained by passive extension of the crust, permitting magma to leak to the surface (the "Plate" hypothesis).[19]The convection of the Earth's mantle is a chaoticprocess (in the sense of fluid dynamics), which is thought to be an integral part of the motion of plates. Plate motion should not be confused with continental drift which applies purely to the movement of the crustal components of the continents. The movements of the lithosphere and the underlying mantle are coupled since descending lithosphere is an essential component of convection in the mantle. The observed continental drift is a complicated relationship between the forces causing oceanic lithosphere to sink and the movements within Earth's mantle.Although there is a tendency to larger viscosity at greater depth, this relation is far from linear and shows layers with dramatically decreased viscosity, in particular in the upper mantle and at the boundary with the core.[20]The mantle within about 200 km above the core-mantle boundary appears to have distinctly different seismic properties than the mantle at slightly shallower depths; this unusual mantle region just above the core is called D″ ("D double-prime"), a nomenclature introduced over 50 years ago by the geophysicist Keith Bullen.[21]D″ may consist of material from subducted slabs that descended and came to rest at the core-mantle boundary and/or from a new mineral polymorph discovered in perovskite called post-perovskite.Earthquakes at shallow depths are a result of stick-slip faulting; however, below about 50 km the hot, high pressure conditions ought to inhibit further seismicity. The mantle is considered to be viscous and incapable of brittle faulting. However, in subduction zones, earthquakes are observed down to 670 km. A number of mechanisms have been proposed to explain this phenomenon, including dehydration, thermal runaway, and phase change. The geothermal gradient can be lowered where cool material from the surface sinks downward, increasing the strength of the surrounding mantle, and allowing earthquakes to occur down to a depth of 400 km and 670 km.The pressure at the bottom of the mantle is ~136 GPa (1.4 million atm).[12]Pressure increases as depth increases, since the material beneath has to support the weight of all the material above it. The entire mantle, however, is thought to deform like a fluid on long timescales, with permanent plastic deformation accommodated by the movement of point, line, and/or planar defects through the solid crystals comprising the mantle. Estimates for the viscosity of the upper mantle range between 1019 and 1024 Pa·s, depending on depth,[20]temperature, composition, state of stress, and numerous other factors. Thus, the upper mantle can only flow very slowly. However, when large forces are applied to the uppermost mantle it can become weaker, and this effect is thought to be important in allowing the formation of tectonic plate boundaries.[edit]ExplorationExploration of the mantle is generally conducted at the seabed rather than on land because of the relative thinness of the oceanic crust as compared to the significantly thicker continental crust.The first attempt at mantle exploration, known as Project Mohole, was abandoned in 1966 after repeated failures and cost over-runs. The deepest penetration was approximately 180 m (590 ft). In 2005 an oceanic borehole reached 1,416 metres (4,646 ft) below the sea floor from the ocean drilling vessel JOIDES Resolution.On 5 March 2007, a team of scientists on board the RRS James Cook embarked on a voyage to an area of the Atlantic seafloor where the mantle lies exposed without any crust covering, mid-way between the Cape Verde Islands and the Caribbean Sea. The exposed site lies approximately three kilometres beneath the ocean surface and covers thousands of square kilometres.[22][23]A relatively difficult attempt to retrieve samples from the Earth's mantle was scheduled for later in 2007.[24]The Chikyu Hakkenmission attempted to use the Japanese vessel 'Chikyu' to drill up to 7,000 m (23,000 ft) below the seabed. This is nearly three times as deep as preceding oceanic drillings.A novel method of exploring the uppermost few hundred kilometres of the Earth was recently proposed, consisting of a small, dense, heat-generating probe which melts its way down through the crust and mantle while its position and progress are tracked by acoustic signals generated in the rocks.[25]The probe consists of an outer sphere of tungstenabout one metre in diameter with a cobalt-60interior acting as a radioactive heat source. It was calculated that such a probe will reach the oceanic Moho in less than 6 months and attain minimum depths of well over 100 km in a few decades beneath both oceanic and continental lithosphere.[26]Exploration can also be aided through computer simulations of the evolution of the mantle. In 2009, a supercomputerapplication provided new insight into the distribution of mineral deposits, especially isotopes of iron, from when the mantle developed 4.5 billion years ago.[27][edit]See alsoCore-mantle boundaryMohorovičić discontinuityLehmann discontinuityPost-perovskite phase transitionMantle convectionMesosphere (mantle)Mantle xenoliths[show] vteStructure of the Earth[edit]Notes^ Mantle: Schlumberger Oilfield Glossary^ abRobertson, Eugene (2007). "The interior of the earth". USGS. Retrieved 2009-01-06.^ Core: Schlumberger Oilfield Glossary^ abc"The structure of the Earth". Moorland School. 2005. Retrieved 2007-12-26.^ Asthenosphere: Schlumberger Oilfield Glossary .^ Lithosphere: Schlumberger Oilfield Glossary^ Crust: Schlumberger Oilfield Glossary^ http://www.livescience.com/1317-mission-study-earth-gaping-open-wound.html^ The location of the base of the crust varies from approximately 10 to 70 kilometers. Oceanic crustis generally less than 10 kilometers thick. "Standard" continental crust is around 35 kilometers thick, and the large crustal root under the Tibetan Plateau is approximately 70 kilometers thick.^ abcdAlden, Andrew (2007). "Today's Mantle: a guided tour". About.com. Retrieved 2007-12-25.^Earth cutaway (image). Retrieved 2007-12-25.^ abcdeBurns, Roger George (1993). Mineralogical Applications of Crystal Field Theory. Cambridge University Press. p. 354. ISBN 0-521-43077-1. Retrieved 2007-12-26.^"Istria on the Internet - Prominent Istrians - Andrija Mohorovicic". 2007. Retrieved 2007-12-25.^Carlowicz, Michael (2005). "Inge Lehmann biography". American Geophysical Union, Washington, D.C.. Archived from the original on 2007-09-30. Retrieved 2007-12-25.^Anderson, Don L. (2007) New Theory of the Earth. Cambridge University Press. ISBN 978-0-521-84959-3, ISBN 0-521-84959-4^Alden, Andrew. "The Big Squeeze: Into the Mantle". About.com. Retrieved 2007-12-25.^mantle@Everything2.com. Retrieved 2007-12-26.^ abcLouie, J. (1996). "Earth's Interior". University of Nevada, Reno. Retrieved 2007-12-24.^Foulger, G.R. (2010). Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell. ISBN 978-1-4051-6148-0.^ abMantle Viscosity and the Thickness of the Convective Downwellings retrieved on November 7, 2007^Alden, Andrew. "The End of D-Double-Prime Time?". About.com. Retrieved 2007-12-25.^ Than, Ker (2007-03-01). "Scientists to study gash on Atlantic seafloor". Msnbc.com. Retrieved 2008-03-16. "A team of scientists will embark on a voyage next week to study an "open wound" on the Atlantic seafloor where the Earth's deep interior lies exposed without any crust covering."^ "Earth's Crust Missing In Mid-Atlantic". Science Daily. 2007-03-02. Retrieved 2008-03-16. "Cardiff University scientists will shortly set sail (March 5) to investigate a startling discovery in the depths of the Atlantic."^"Japan hopes to predict 'Big One' with journey to center of Earth". PhysOrg.com. 2005-12-15. Archived from the original on 2005-12-19. Retrieved 2008-03-16. "An ambitious Japanese-led project to dig deeper into the Earth's surface than ever before will be a breakthrough in detecting earthquakes including Tokyo's dreaded "Big One," officials said Thursday."^ Ojovan M.I., Gibb F.G.F., Poluektov P.P., Emets E.P. 2005. Probing of the interior layers of the Earth with self-sinking capsules. Atomic Energy, 99, 556-562^ Ojovan M.I., Gibb F.G.F. "Exploring the Earth's Crust and Mantle Using Self-Descending, Radiation-Heated, Probes and Acoustic Emission Monitoring". Chapter 7. In: Nuclear Waste Research: Siting, Technology and Treatment, ISBN 978-1-60456-184-5, Editor: Arnold P. Lattefer, Nova Science Publishers, Inc. 2008


Related questions

What are the types of probing?

* anal probing * back probing * probing probing


Sentence with probing?

I was probing my hand, because i had fallen earlier.


What if food?

the probing of cows


What is quadratic probing in data structure?

Quadratic probing is a scheme in computer programming for resolving collisions in hash tables. Quadratic probing operates by taking the original hash value and adding successive values of an arbitrary quadratic polynomial to the starting value. This algorithm is used in open-addressed hash tables. Quadratic probing provides good memory caching because it preserves some locality of reference; however, linear probing has greater locality and, thus, better cache performance. Quadratic probing better avoids the clustering problem that can occur with linear probing, although it is not immune.


What is back probing?

The meter leads are narrow enough to fit into the connector beside the wire and make contact with the metal terminal inside. The technique is called back probing because you are probing the connector from the back. You must use this back probing technique to perform all the following measurements. From- Ratan Banik(Khowai, Tripura).


What is a probing material?

yes no maybe


An adjective for the word probe?

probing


What was the 3 questions that Socrates asked himself?

1)probing underline concepts. 2)probibg assamptions. 3)probing evdidence.


What is probing questioning?

A probing question is an open-ended follow-up question intended to elicit a thoughtful answer A probing question is typically intended to elicit an answer that clarifies ambiguities, provides missing or more-detailed information, or justifies previous statements.


How you will use probing skills while teaching in the class rooms with the help of a suitable example?

Probing questions are intended to make people reflect on their responses instead of just providing a yes or no answer.A good example is, "How would you go about implementing that strategy?" For more information about probing questions as well as more examples of probing questions, see the related links.


The Probing attitude is at the core of?

critical thinking


What are the release dates for Phenomena Probing the Paranormal - 2009?

Phenomena Probing the Paranormal - 2009 was released on: USA: October 2009 (Eerie Film Festival)