answersLogoWhite

0

F=M(A), you can simply derive a formula by solving for A. So devide F by M and you get A=F/M. Then you can ask yourself, if when you increase of decrease mass what will happen to acceleration. assuming the unbalanced force is constant. soo when mass increases acceleration decreases. and when you take away mass from a body, then you can say that acceleration increases. You must assume that the force is constant. :D

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

Do objects have equal acceleration?

Not necessarily. Objects can have different masses or experiences different forces, resulting in different accelerations.


Why objects of different masses falling in the moon accelerate at the same rate?

Objects of different masses accelerate at the same rate on the moon because the acceleration due to gravity on the moon is constant for all objects, regardless of their mass. This is because the force of gravity is proportional to the mass of the object, so the acceleration is the same for all objects.


How do similar forces act on the motion of objects of different masses?

Similar forces will result in different accelerations on objects of different masses. According to Newton's second law, F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration. Objects with larger masses will experience smaller accelerations compared to objects with smaller masses when subjected to the same force.


Why do 2 objects of different masses dropped from the same height hit the ground at the same time?

Two objects of different masses dropped from the same height will hit the ground at the same time because gravity pulls on both objects with the same acceleration, regardless of their mass. This acceleration is a constant value and it causes both objects to fall at the same rate, resulting in them hitting the ground simultaneously.


What happens when two objects of different masses are dropped in a vacuum?

In a vacuum, where there is no air resistance, two objects of different masses will fall at the same rate and hit the ground at the same time. This is due to the acceleration of gravity being the same for all objects in a vacuum, regardless of their mass.


Why does an object move if the action-reaction forces are equal?

Even though the action-reaction forces are equal in magnitude, they are acting on different objects which can have different masses. As a result, the acceleration of each object may be different. This difference in acceleration leads to the objects moving in different directions.


What are the effects of a uniform gravitational field on objects of different masses?

In a uniform gravitational field, objects of different masses will experience the same acceleration due to gravity. This means that regardless of their mass, all objects will fall at the same rate and hit the ground at the same time when dropped from the same height.


Who proved that objects of a different mass fall at the same rate by dropping two cannonballs of different masses from the top of the leaning tower of pizza?

Galileo Galilei proved that objects of different masses fall at the same rate by dropping two cannonballs of different masses from the top of the Leaning Tower of Pisa. This experiment demonstrated the concept of acceleration due to gravity being constant for all objects regardless of their mass.


How is the gravity between two objects affected by their masses?

The one that is heavier


What is the Atwood machine equation used for and how does it relate to the motion of the system?

The Atwood machine equation is used to calculate the acceleration of a system consisting of two masses connected by a string over a pulley. It relates the masses of the objects and the force of gravity to determine the acceleration of the system. This equation helps understand how the masses move in relation to each other and how their motion is affected by the forces acting on them.


When dropping objects with different masses which object will land first?

In the absence of air resistance, objects of different masses will land at the same time when dropped from the same height. This is due to the acceleration due to gravity being constant for all objects near the surface of the Earth.


What is the Atwood machine acceleration equation and how does it relate to the motion of the system?

The Atwood machine acceleration equation is a (m2 - m1) g / (m1 m2), where a is the acceleration of the system, m1 and m2 are the masses of the two objects on the pulley, and g is the acceleration due to gravity. This equation shows how the acceleration of the system is influenced by the difference in masses of the two objects and the total mass of the system.