i think that it might be gravity are we talking bout a clock? or someting on a string?
momentum
Because of the air resistance which causes the pendulum to gradually lose energy.
Earth's rotation affects a pendulum due to the Coriolis force, which causes the pendulum's plane of oscillation to rotate clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere. This rotation is a result of the pendulum's inertia attempting to maintain its orientation as Earth rotates underneath it. The Coriolis effect causes the apparent deflection of the pendulum's swing.
The bottom of the pendulum swing is called the equilibrium position.
A simple pendulum.
You can make a pendulum swing faster by increasing its initial height or by shortening the length of the pendulum. Both of these actions will result in a larger potential energy that will be converted into kinetic energy, causing the pendulum to swing faster.
Yes, a pendulum can precess due to the interaction between its motion and external forces like friction or gravity. The precession causes the swing plane of the pendulum to rotate slowly over time.
The acceleration of a pendulum is zero at the lowest point of its swing.
No, the swing of the pendulum will never carry it back quite as high as it was when it started. The pendulum must work against air resistance, and so a little bit of momentum is lost with every swing. Even if the pendulum operated in a vacuum, there would still be some tiny amount of friction at the point where the pendulum is attached to its frame. The swing of a pendulum is never 100% efficient. So the pendulum will run down.
a person sitting on a swing without really trying
If a pendulum were to swing on the moon, it would swing more slowly and for a longer period of time compared to on Earth due to the moon's lower gravity. This is because gravity affects the speed and duration of the pendulum's swing.
The variables that affect the swing of a pendulum are its length, mass, and the amplitude of its initial displacement. A longer pendulum will have a slower swing rate, while a heavier mass will also affect the period of oscillation. Amplitude plays a role in determining the maximum speed of the pendulum swing.