There is not enough information provided to answer. KVA is short for "Kilo Volt Amperes". That is, thousands of Volt Amps. In order to determine how many Amperes are flowing, you must know at what voltage it is operating.
Amperes = 45,000 ÷ volts
Bill Slugg
It depends on the rated voltage of its secondary.
It depends on what the output voltage is. You only specified the input voltage, not the output voltage. The equation is 75 Kva = {some} amps times {some} kilovolts. (Minus incidental losses, of course, but you still need to know output volts.)
Take the KVA and divide it by the voltage. 25/.230 = 109 amps. The transformer can put out up to 50% more that its rated for short durations. So you could get around 150 amps out of a 25 Kva tranformer in a worst case situation.
The size of grounding wire is based on the amperage output of the transformer. The voltage of the transformer needs to be stated. Without this voltage a calculation can not be made. Amps = Watts/Volts = 30000/?.
This is the rated output of the transformer, obtained by multiplying the rated secondary voltage by the rated secondary current. And it's 'kV.A', not 'kva'.
The amps you can get from a 500 kVA transformer would depend on the voltage of the transformer's output. To calculate amperage, you can use the formula: Amps = Power (kVA) / Voltage. For example, if the output voltage is 480V, you would get approximately 1041 amps (500 kVA / 480V).
Yes, but your input current is going to be high at 133 amps. The output of the transformer is not going to be 16 KVA, that is the rating of the transformer.
To calculate the amperage in the secondary side of a transformer, you can use the formula: Amps = kVA / (Volts x Sqrt(3)). For a 250 kVA transformer with a 220-volt secondary, the amperage will be approximately 660.4 Amps.
The kVA represents the power-handling capability of the transformer.So, if you were using a 1 kVA transformer at 110 volts, you could roughly estimate the maximum output to be 9 amps.
It depends on the rated voltage of its secondary.
You can't determine the output voltage of a transformer by knowing kva. Transformers will be marked as to input and output voltages. Some will have multiple input and output voltages. The output voltage depends on the ratio of coil turns between input and output.
It depends on what the output voltage is. You only specified the input voltage, not the output voltage. The equation is 75 Kva = {some} amps times {some} kilovolts. (Minus incidental losses, of course, but you still need to know output volts.)
To determine the amps for a 500 kVA transformer, you can use the formula: Amps = kVA × 1000 / (Voltage). For example, at a standard voltage of 480V, the calculation would be 500,000 VA / 480V, which equals approximately 1041.67 amps. The specific current will vary based on the voltage level used with the transformer.
Take the KVA and divide it by the voltage. 25/.230 = 109 amps. The transformer can put out up to 50% more that its rated for short durations. So you could get around 150 amps out of a 25 Kva tranformer in a worst case situation.
The formula you are looking for is , A = kva x 1000/Volts.
The size of grounding wire is based on the amperage output of the transformer. The voltage of the transformer needs to be stated. Without this voltage a calculation can not be made. Amps = Watts/Volts = 30000/?.
It depends on how many amps it was designed for. A 12.5kV/600v 10kVA 3 phase transformer can handle ~.5 amps on the primary and ~10A on the secondary. A 600/120V 10kVA 3 phase transformer can handle ~10A on the primary and ~50 on the secondary.