The ability of conductor to induce voltage in itself when the current changes is called inductive reactance.
No, the resistance of a copper conductor does not vary according to applied voltage. It is constant for a given wire size, and only varies with temperature. Of course, current through a conductor causes it to heat, so current, not voltage, indirectlycauses a change in resistance.
self inductance
Diode is a non-ohmic conductor since in diodes current-voltage relation ship does't obey Ohm's law....the relationship between current and voltage is nonlinear here,...
It's called back EMF or reverse EMF. The EMF is electro-motive force, or voltage. What is happening is that the original current flow creates a magnetic field. That field then induces a voltage that opposes the original voltage that is causing the current flow. This back EMF "resists" the original voltage's efforts to cause current flow. If the created magnetic field did not oppose the original "efforts" of the voltage source to make current flow, then it would aid that voltage to make current flow. We would then get something for nothing and perpetual motion would be possible. We can't do that.
The three electrical quantities are current voltage and resistance. Current is measured in amperes (A) and is the rate at which electricity flows through a conductor. Voltage is measured in volts (V) and is the electrical force pushing the current through the conductor. Resistance is measured in ohms () and is the opposition to the flow of current. Current - measured in amperes (A) Voltage - measured in volts (V) Resistance - measured in ohms ()
The "current" through any conductor is voltage across the conductor/conductor's resistance .The current is measured in "Amperes" (amps)."MA" stands for "Milliamps". There are 1,000 of those in one whole ampere.So, the current through a conductor is1,000 times the voltage across the conductor/conductor's resistance . . . in MA
The current in a conductor can be increased by either increasing the voltage applied across the conductor or decreasing the resistance of the conductor.
voltage is applied to a conductor to cause a current flow
Voltage causes the flow of electric current in a circuit. It is the driving force that pushes electrons through a conductor, allowing electrical devices to operate. The higher the voltage, the more current will flow through the circuit.
pogi current flow in the armature conductor
I=V/R, current = voltage divided by resistanceAnswerOhm's Law states that 'the current flowing through a conductor, at constant temperature, is directly proportional to the potential difference across the conductor'.Ohm's Law only applies when the ratio of voltage to current is constant over a wide range of voltages. If the ratio changes, then Ohm's Law does not apply.
When a voltage is applied across it.
moving
The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to the current. It was discovered by Edwin Hall in 1879
moving
Electric current passes through a conductor when a voltage is applied across it, creating an electric field that pushes charged particles (electrons) through the material. The electrons move in response to this field, flowing from areas of higher voltage to areas of lower voltage. The amount of current that passes through the conductor depends on the material's conductivity and the applied voltage.
No, the resistance of a copper conductor does not vary according to applied voltage. It is constant for a given wire size, and only varies with temperature. Of course, current through a conductor causes it to heat, so current, not voltage, indirectlycauses a change in resistance.