The resistance of the circuit will be 46 ohms
V = IR Where, V = voltage I = current R = resistance Thus if resistance is increased with constant voltage current will decrease
Voltage is equal to the Current multiplied by the Resistance.Without changing the resistance, increasing the applied voltage in a circuit will increase current flow. There is a simple, direct relationship between voltage and current. Double the voltage, twice the current will flow. Triple the voltage, and the current will triple. As voltage (E) equals current (I) times resistance (R), when resistance is fixed, what happens to voltage will happen to current.
If the ratio of voltage to current is constant, then the circuit is obeying Ohm's Law. If the ratio changes for variations in voltage, then the circuit does not obey Ohm's Law.
There is a simple equation relating voltage (properly potential difference), current and resistance: V=IR Where V=potential difference, I=current and R=resistance So to answer: I=60/12 I=5
Yes, if the resistance remains constant. Power is voltage times current, and current is voltage divided by resistance, so power is voltage squared divided by resistance. In essence, the power increases as the square of the voltage.
The relationship between current and voltage in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the circuit. In simpler terms, as the voltage increases, the current flowing through the circuit also increases, assuming the resistance remains constant.
The relationship between voltage and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the circuit. This means that as the voltage increases, the current flowing through the circuit also increases, assuming the resistance remains constant.
In a circuit with constant voltage, the relationship between current and resistance is inversely proportional. This means that as resistance increases, the current flowing through the circuit decreases, and vice versa.
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)
The relationship between resistance and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.
Ohm's Law states that the relationship between voltage (V), current (I), and resistance (R) in an electrical circuit is given by the equation V I R. This means that the voltage across a circuit is directly proportional to the current flowing through it and the resistance of the circuit.
In an electrical circuit, the relationship between current and resistance is described by Ohm's Law. This law states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.
In an electrical circuit, voltage is the force that pushes electric current through a conductor. Current is the flow of electric charge, and resistance is the opposition to the flow of current. According to Ohm's Law, the relationship between voltage (V), current (I), and resistance (R) is given by the equation V I R. This means that the voltage across a circuit is equal to the current flowing through it multiplied by the resistance of the circuit.
To determine the current in amps flowing through the circuit, you need to use Ohm's Law, which states that current (I) equals voltage (V) divided by resistance (R). The formula is I V / R. Measure the voltage across the circuit and the total resistance of the circuit, then plug the values into the formula to calculate the current in amps.
To calculate the current in a circuit, you can use Ohm's Law, which states that current (I) equals voltage (V) divided by resistance (R). The formula is I V/R. Simply plug in the values for voltage and resistance to find the current flowing through the circuit.
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)