2 times per second x (2.5)= 5 volts
6 times per second x (2.5)=15 volts
The magnetic field lines (the lines of force) around the magnet sweep the windings in the coil. This induces a voltage in the windings (through induction), and the voltage will try to drive current if it can. There is a bit more to this, but the essential elements are that the magentic lines of force cause voltage in the coil because there is relative motion between the field and the coil.
Try a magnet!
an electric current can produce a magnetic field. then,magnetic field within the core of wire will induced the voltage. so magnetic will produce from current at the galvanometer and magnet was far from galvanometer and it induces the voltage
No. A magnet only interfers with magnetic fields ... lots of old IBMs used magnetic memory cards and that's where the stories started. It might erase a floppy disk, but an electro-magnet does the job much better than a perminant magnet.
Yes, but only if the magnet or the wire are kept moving.
15 volts because : 2 times in a second=5volts then 6 times in a second=15 volts
=15 volts +10volts
did obama do good in school
The magnet induces magnetism in the iron - small magnetic regions in the iron become aligned, due to the magnetic field.
A magnet induces an electric current in a wire coil when there is a relative motion between the magnet and the coil, which generates a changing magnetic field. This changing magnetic field induces an electromotive force, leading to the flow of an electric current in the wire coil.
Moving a magnet quickly in and out of a coil of wire induces an electric current in the wire due to electromagnetic induction. The changing magnetic field created by the moving magnet induces a current flow in the wire loop according to Faraday's law of electromagnetic induction.
The rotation of a magnet in a dynamo induces a changing magnetic field, which in turn induces an electric current in the surrounding wire coils due to electromagnetic induction. This current produces electrical power that can be harnessed for various applications.
Moving the magnet towards the coil induces a current in one direction, while moving it away induces a current in the opposite direction. This is due to Faraday's law of electromagnetic induction, which states that a changing magnetic field induces an electromotive force (EMF) that leads to the current flow.
When a magnet moves near a wire, it creates a changing magnetic field around the wire. This changing magnetic field induces an electric current to flow in the wire through electromagnetic induction. The current is only induced while there is a relative motion between the magnet and the wire, or if the magnetic field intensity changes.
When you move the magnet back and forth near a coil of wire, it induces an alternating current in the wire. The direction of this induced current changes as the magnet moves due to Faraday's law of electromagnetic induction, which states that changing magnetic fields induce an electromotive force (emf) in a conductor.
the moving magnet creates a changing magnetic field around the coil of wire. This changing magnetic field induces an electric current in the wire according to Faraday's law of electromagnetic induction.
You can induce a current in a wire by moving the magnet in and out of the coil or by moving the coil near the magnet. The changing magnetic field created by the moving magnet induces a current in the wire according to Faraday's law of electromagnetic induction.