members in union and enum both shares memory and the size of the union is the size of the highest element like if there is one int and one char in union then the size of union will be the size of an int. if an int and an float are there then the size of the union will be the size of the float. This is not the case in the enum. it has similar type of members. and the value of the members can be assign manually like this
enum e{ZERO,ONE,TWO=20,THREE};
here ZERO will have value 0, ONE will have value 1, TWO will be having 20 , THREE will be having 21.. and so on
Answer: they are no way similar, no point in comparing them.
enum, void and const are relatively new keywords in Cnew, on the other hand, isn't a keyword in C
In C++, enum signifies a slightly stronger type than in C. For example, in C, one could write: enum Direction { UP, DOWN }; Direction d = 1; In C++, this would be illegal, only UP or DOWN can be assigned to a variable of type Direction, though there is still implicit casting to integer, so one could still write: int i = UP; Another difference has to do with the way variable are declared in general in C++. In C, once the enum was declared as above, declaring variables of type Direction would have to be done through the enum keyword, like this: enum Direction d = UP; In C++, the name "Direction" becomes a type in itself, so you can write: Direction d = UP;
The enum keyword means enumeration.
You can't pass an enum as an argument to a function. An enum in C isn't an object, it's a type. All you can do is pass a variable that is of the particular enum's type.
That is correct - In c plus plus you cannot assign integer value to enum - You can only assign an enum value to an enum. Even though an enum looks like an integer, it is not. It is an enum, and C++ implements strict type checking to reduce the probability of bad programming practices. enum ColorCode {black, brown, red, orange, yellow, green, blue, violet, grey, white}; ColorCode myColorCode; myColorCode = yellow; Even though yellow has an integer value of 4, you cannot say myColorCode = 4.
enum, void and const are relatively new keywords in Cnew, on the other hand, isn't a keyword in C
In C++, enum signifies a slightly stronger type than in C. For example, in C, one could write: enum Direction { UP, DOWN }; Direction d = 1; In C++, this would be illegal, only UP or DOWN can be assigned to a variable of type Direction, though there is still implicit casting to integer, so one could still write: int i = UP; Another difference has to do with the way variable are declared in general in C++. In C, once the enum was declared as above, declaring variables of type Direction would have to be done through the enum keyword, like this: enum Direction d = UP; In C++, the name "Direction" becomes a type in itself, so you can write: Direction d = UP;
The enum keyword means enumeration.
You can't pass an enum as an argument to a function. An enum in C isn't an object, it's a type. All you can do is pass a variable that is of the particular enum's type.
That is correct - In c plus plus you cannot assign integer value to enum - You can only assign an enum value to an enum. Even though an enum looks like an integer, it is not. It is an enum, and C++ implements strict type checking to reduce the probability of bad programming practices. enum ColorCode {black, brown, red, orange, yellow, green, blue, violet, grey, white}; ColorCode myColorCode; myColorCode = yellow; Even though yellow has an integer value of 4, you cannot say myColorCode = 4.
#include<iostream> #include<array> #include<cmath> const double pi { std::atan(1) * 4 }; const double rad2deg (const double rad) { return ((int) (100000.0 * rad * 180 / pi)) / 100000.0; } const double deg2rad (const double deg) { return ((int) (100000.0 * deg * pi / 180)) / 100000.0; } class point { public: int x; int y; point (int _x=0, int _y=0): x{_x}, y{_y} {} point (const point& p): x{p.x}, y{p.y} {} point (point&& p): x{std::move(p.x)}, y{std::move(p.y)} {} point& operator= (const point& p) {x=p.x, y=p.y; return *this;} point& operator= (point&& p) {x =std::move(p.x), y=std::move(p.y); return *this;} ~point() {} }; double distance (const point& a, const point& b) { int x = a.x - b.x; int y = a.y - b.y; return std::sqrt ((x*x) + (y*y)); }; class triangle { public: using triangle_t = std::array<point, 3>; triangle_t vertex; enum angle_t {A, B, C}; enum side_t {a, b, c}; triangle (const point&, const point&, const point&); triangle (const triangle_t&); double angle_rad (const angle_t) const; double angle (const angle_t) const; double side (const side_t) const; bool is_equilateral () const; bool is_isosceles () const; bool is_right_isosceles () const; bool is_acute_isosceles () const; bool is_obtuse_isosceles () const; }; triangle::triangle (const point& A, const point& B, const point& C) { vertex[0] = A; vertex[1] = B; vertex[2] = C; } triangle::triangle (const triangle_t& v) { vertex = v; } double triangle::side(const side_t _side) const { switch (_side) { case a: return distance (vertex[b], vertex[c]); case b: return distance (vertex[a], vertex[c]); case c: default: return distance (vertex[a], vertex[b]); } } double triangle::angle_rad(const angle_t _angle) const { const double a = side(triangle::a); const double b = side(triangle::b); const double c = side(triangle::c); switch (_angle) { case A: return std::acos (((b*b) + (c*c) - (a*a))/(2*b*c)); case B: return std::acos (((a*a) + (c*c) - (b*b))/(2*a*c)); case C: default: return std::acos (((a*a) + (b*b) - (c*c))/(2*a*b)); } } double triangle::angle(const angle_t _angle) const { return rad2deg (angle_rad(_angle)); } bool triangle::is_equilateral () const { return side(a)==side(b) && side(b) == side(c); } bool triangle::is_isosceles () const { return !is_equilateral() && ( side(a)==side(b) side(a)==side(c) side(b)==side(c)); } bool triangle::is_right_isosceles () const { return is_isosceles() && ( angle(triangle::A)==90.0 angle(triangle::B)==90.0 angle(triangle::C)==90.0); } bool triangle::is_obtuse_isosceles () const { return (90.0<angle(triangle::A) && side(b)==side(c)) (90.0<angle(triangle::B) && side(a)==side(c)) (90.0<angle(triangle::C) && side(a)==side(b)); } bool triangle::is_acute_isosceles () const { return !is_equilateral() && ( (angle(triangle::A)<90.0 && side(b)==side(c)) (angle(triangle::B)<90.0 && side(a)==side(c)) (angle(triangle::C)<90.0 && side(a)==side(b))); } std::ostream& operator<< (std::ostream& os, const triangle& t) { return os << "Side a\t\t\t= " << t.side(triangle::a) << std::endl << "Side b\t\t\t= " << t.side(triangle::b) << std::endl << "Side c\t\t\t= " << t.side(triangle::c) << std::endl << "Angle A\t\t\t= " << t.angle(triangle::A) << " degrees" << std::endl << "Angle B\t\t\t= " << t.angle(triangle::B) << " degrees" << std::endl << "Angle C\t\t\t= " << t.angle(triangle::C) << " degrees" << std::endl << "Is equilateral\t\t= " << (t.is_equilateral() ? "yes" : "no") << std::endl << "Is isosceles\t\t= " << (t.is_isosceles() ? "yes" : "no") << std::endl << "Is right isosceles\t= " << (t.is_right_isosceles() ? "yes" : "no") << std::endl << "Is obtuse isosceles\t= " << (t.is_obtuse_isosceles() ? "yes" : "no") << std::endl << "Is acute isosceles\t= " << (t.is_acute_isosceles() ? "yes" : "no") << std::endl; } int main() { triangle t {{0,0},{6,6},{6,0}}; std::cout << t << std::endl; t.vertex[triangle::B]=point{3,6}; std::cout << t << std::endl; }
#include<iostream> #include<vector> #include<random> template<const size_t R, const size_t C> class Matrix { public: using row_type = int[C]; private: // attributes int m_data[R][C]; public: // construction/assignment Matrix (); Matrix (const Matrix& source); Matrix (Matrix&& source); Matrix& operator= (const Matrix<R,C>& source); Matrix& operator= (Matrix<R,C>&& source); ~Matrix () {} public: // accessors row_type& row (const size_t index) { return m_data[index]; } const row_type& row (const size_t index) const { return m_data[index]; } row_type& operator[] (const size_t index) { return m_data[index]; } const row_type& operator[] (const size_t index) const { return m_data[index]; } size_t size() const { return R * C; } size_t rows() const { return R; } size_t cols() const { return C; } void randomise(std::uniform_int_distribution<int>& distribution, std::default_random_engine& generator); public: // operations Matrix<R,C>& operator+= (const Matrix<R,C>&); Matrix<R,C>& operator-= (const Matrix<R,C>&); }; template<const size_t R, const size_t C> void Matrix<R,C>::randomise(std::uniform_int_distribution<int>& distribution, std::default_random_engine& generator) { for (size_t row=0; row!=R; ++row) { for (size_t col=0; col!=C; ++col) { m_data[row][col] = distribution (generator); } } } template<const size_t R, const size_t C> Matrix<R,C>::Matrix() { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = 0; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator+= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] += rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator-= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] -= rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C> operator+ (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sum (lhs); return sum += rhs; } template<const size_t R, const size_t C> Matrix<R,C> operator- (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sub (lhs); return sub -= rhs; } template<const size_t R, const size_t C, const size_t R1, const size_t C1> Matrix<R,C1> operator* (const Matrix<R,C>& lhs, const Matrix<R1,C1>& rhs) { static_assert (C==R1, "Matrix dimension mismatch!"); Matrix<R,C1> mul; for (size_t x=0; x!=R; ++x) { for (size_t y=0; y!=C1; ++y) { int prod = 0; for (size_t z=0; z!=C; ++z) { prod += lhs[x][z] * rhs[z][y]; } mul[x][y] = prod; } } return mul; } template<const size_t R, const size_t C> std::ostream& operator<< (std::ostream& os, const Matrix<R,C>& m) { for (size_t row=0; row<R; ++row) { for (size_t col=0; col<C; ++col) { std::cout << m[row][col] << '\t'; } std::cout << std::endl; } return os; } int main() { std::default_random_engine generator; std::uniform_int_distribution<int> distribution (1,9); const size_t rows = 2; const size_t cols = 3; Matrix<rows, cols> a, b; a.randomise (distribution, generator); b.randomise (distribution, generator); std::cout << "Matrix a:\n\n" << a << '\n' << std::endl; std::cout << "Matrix b:\n\n" << b << '\n' << std::endl; std::cout << "Matrix a + b:\n\n" << a + b << '\n' << std::endl; std::cout << "Matrix a - b:\n\n" << a - b << '\n' << std::endl; Matrix<cols, rows> c; c.randomise (distribution, generator); std::cout << "Matrix c:\n\n" << c << '\n' << std::endl; std::cout << "Matrix a * c:\n\n" << a * c << '\n' << std::endl; }
#include<iostream> #include<vector> #include<time.h> template<const size_t R, const size_t C> class Matrix { public: using row_type = int[C]; private: // attributes int m_data[R][C]; public: // construction/assignment Matrix (); Matrix (const Matrix& source); Matrix (Matrix&& source); Matrix& operator= (const Matrix<R,C>& source); Matrix& operator= (Matrix<R,C>&& source); ~Matrix () {} public: // accessors row_type& row (const size_t index) { return m_data[index]; } const row_type& row (const size_t index) const { return m_data[index]; } row_type& operator[] (const size_t index) { return m_data[index]; } const row_type& operator[] (const size_t index) const { return m_data[index]; } size_t size() const { return R * C; } size_t rows() const { return R; } size_t cols() const { return C; } public: // operations Matrix<R,C>& operator+= (const Matrix<R,C>&); }; template<const size_t R, const size_t C> Matrix<R,C>::Matrix() { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = 0; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator+= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] += rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C> operator+ (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sum (lhs); return sum += rhs; } template<const size_t R, const size_t C> std::ostream& operator<< (std::ostream& os, const Matrix<R,C>& m) { for (size_t row=0; row<R; ++row) { for (size_t col=0; col<C; ++col) { std::cout << m[row][col] << '\t'; } std::cout << std::endl; } return os; } int main() { srand ((unsigned)time(nullptr)); const size_t rows = 3; const size_t cols = 3; Matrix<rows, cols> a, b, c; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { a[row][col] = rand() % 10; b[row][col] = rand() % 10; } } std::cout << "Matrix a:\n\n" << a << '\n' << std::endl; std::cout << "Matrix b:\n\n" << b << '\n' << std::endl; std::cout << "Matrix a + b:\n\n" << a + b << '\n' << std::endl; }
#include<iostream> #include<vector> #include<random> template<const size_t R, const size_t C> class Matrix { public: using row_type = int[C]; private: // attributes int m_data[R][C]; public: // construction/assignment Matrix (); Matrix (const Matrix& source); Matrix (Matrix&& source); Matrix& operator= (const Matrix<R,C>& source); Matrix& operator= (Matrix<R,C>&& source); ~Matrix () {} public: // accessors row_type& row (const size_t index) { return m_data[index]; } const row_type& row (const size_t index) const { return m_data[index]; } row_type& operator[] (const size_t index) { return m_data[index]; } const row_type& operator[] (const size_t index) const { return m_data[index]; } size_t size() const { return R * C; } size_t rows() const { return R; } size_t cols() const { return C; } public: // operations Matrix<R,C>& operator+= (const Matrix<R,C>&); Matrix<R,C>& operator-= (const Matrix<R,C>&); }; template<const size_t R, const size_t C> Matrix<R,C>::Matrix() { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = 0; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; } template<const size_t R, const size_t C> Matrix<R,C>::Matrix(Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (const Matrix<R,C>& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = source.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator= (Matrix<R,C>&& source) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] = std::move (source.m_data[row][col]); return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator+= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] += rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C>& Matrix<R,C>::operator-= (const Matrix<R,C>& rhs) { for (size_t row=0; row<R; ++row) for (size_t col=0; col<C; ++col) m_data[row][col] -= rhs.m_data[row][col]; return *this; } template<const size_t R, const size_t C> Matrix<R,C> operator+ (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sum (lhs); return sum += rhs; } template<const size_t R, const size_t C> Matrix<R,C> operator- (const Matrix<R,C>& lhs, const Matrix<R,C>& rhs) { Matrix<R,C> sub (lhs); return sub -= rhs; } template<const size_t R, const size_t C, const size_t R1, const size_t C1> Matrix<R,C1> operator* (const Matrix<R,C>& lhs, const Matrix<R1,C1>& rhs) { static_assert (C==R1, "Matrix dimension mismatch!"); Matrix<R,C1> mul; for (size_t x=0; x!=R; ++x) { for (size_t y=0; y!=C1; ++y) { int prod = 0; for (size_t z=0; z!=C; ++z) { prod += lhs[x][z] * rhs[z][y]; } mul[x][y] = prod; } } return mul; } template<const size_t R, const size_t C> std::ostream& operator<< (std::ostream& os, const Matrix<R,C>& m) { for (size_t row=0; row<R; ++row) { for (size_t col=0; col<C; ++col) { std::cout << m[row][col] << '\t'; } std::cout << std::endl; } return os; } int main() { std::default_random_engine generator; std::uniform_int_distribution<int> distribution (1,9); const size_t rows = 2; const size_t cols = 3; Matrix<rows, cols> a, b; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { a[row][col] = distribution (generator); b[row][col] = distribution (generator); } } std::cout << "Matrix a:\n\n" << a << '\n' << std::endl; std::cout << "Matrix b:\n\n" << b << '\n' << std::endl; std::cout << "Matrix a + b:\n\n" << a + b << '\n' << std::endl; std::cout << "Matrix a - b:\n\n" << a - b << '\n' << std::endl; Matrix<cols, rows> c; for (size_t row=0; row<rows; ++row) { for (size_t col=0; col<cols; ++col) { c[col][row] = distribution (generator); } } std::cout << "Matrix c:\n\n" << c << '\n' << std::endl; std::cout << "Matrix a * c:\n\n" << a * c << '\n' << std::endl; }
The difference between C and the advanced C is that C is basic. On the other hand, the advanced C is thorough and to the detail.
The C and C programming languages are one and the same. There is no difference between those languages.
C defines the following keywords, which are reserved and cannot be re-defined or overloaded: auto break case char const continue default do double else enum extern float for goto if int long register return short signed sizeof static struct switch typedef union unsigned void volatile while