The primary current is determined by the secondary current, not the other way around. For example, a step up transformer will step up the primary voltage in proportion to the turns ratio of the transformer. Any secondary current is then determined by the secondary voltage and the load, NOT by the primary current. The primary current is then determined by the secondary current in proportion to the reciprocal of the turns ratio.
what is the fault in the transformer, it trips when it is charged.it is charged through the 100 amps MCCB.
This typically has to do with how many amps you can safely pull from the secondary of the transformer.
On a 1kva you have 1000 watts capacity. To fine the current the formula is I = W/E. The secondary side of the transformer has the capacity of 1000/120 = 8.3 amps. In your question you do not put the amps across the secondary you draw amps from it. Using the transformer to its maximum, without overloading it, the primary will be 4.16 amps at 240 volts and the secondary will be 8.33 at 120 volts. <<>> voltage times amps equals wattage
The wattage must remain equal on the primary and secondary sides of a transformer. An example to the above statement with a 1000 watt step down transformer. To fine the watts (load) the formula is W = A x V. The primary side of the transformer has the capacity of 1000 W = 4.16 Amps x 240 Volts. The secondary side of the transformer has the capacity of 1000 W = 8.3 Amps x 120 Volts. Using the transformer to its maximum, without overloading it, the primary will be 4.16 amps at 240 volts and the secondary will be 8.33 at 120 volts. As you can see the wattage (load) remains constant only the voltages and current change.
Transformer or instrument transformer. It can increase and decrease current output.
using a step-up transformer. ****warning***** will stress a power supply
what is the fault in the transformer, it trips when it is charged.it is charged through the 100 amps MCCB.
depends on the type of transformer, does it have any markings? just type them into google or look for a capital a 'A' for amps or mA for mili amps.
The amps you can get from a 500 kVA transformer would depend on the voltage of the transformer's output. To calculate amperage, you can use the formula: Amps = Power (kVA) / Voltage. For example, if the output voltage is 480V, you would get approximately 1041 amps (500 kVA / 480V).
This typically has to do with how many amps you can safely pull from the secondary of the transformer.
On a 1kva you have 1000 watts capacity. To fine the current the formula is I = W/E. The secondary side of the transformer has the capacity of 1000/120 = 8.3 amps. In your question you do not put the amps across the secondary you draw amps from it. Using the transformer to its maximum, without overloading it, the primary will be 4.16 amps at 240 volts and the secondary will be 8.33 at 120 volts. <<>> voltage times amps equals wattage
To determine the amps for a 500 kVA transformer, you can use the formula: Amps = kVA × 1000 / (Voltage). For example, at a standard voltage of 480V, the calculation would be 500,000 VA / 480V, which equals approximately 1041.67 amps. The specific current will vary based on the voltage level used with the transformer.
The transformer itself does not pull current. Whatever you connect to the transformer pulls current. Whatever the output voltage of the transformer is, divide that into 600 and you get maximum current possible without burning up the transformer. At 24V that's 25 amps.
2.083 amps
The purpose of a transformer is to transform one voltage to another voltage. This can be in the configuration of stepping up the voltage or stepping down the voltage . The load is what establishes what the current from the transformer is going to be.
The wattage must remain equal on the primary and secondary sides of a transformer. An example to the above statement with a 1000 watt step down transformer. To fine the watts (load) the formula is W = A x V. The primary side of the transformer has the capacity of 1000 W = 4.16 Amps x 240 Volts. The secondary side of the transformer has the capacity of 1000 W = 8.3 Amps x 120 Volts. Using the transformer to its maximum, without overloading it, the primary will be 4.16 amps at 240 volts and the secondary will be 8.33 at 120 volts. As you can see the wattage (load) remains constant only the voltages and current change.
To calculate the amperage in the secondary side of a transformer, you can use the formula: Amps = kVA / (Volts x Sqrt(3)). For a 250 kVA transformer with a 220-volt secondary, the amperage will be approximately 660.4 Amps.