Current, voltage and resistance are related by the Ohm's law formula which states that current is directly proportional to the applied voltage and inversely proportional to the resistance at a constant temperature.
Stated mathematically:
I = E/R
where I = current in amperes, abbreviated to A
E = voltage in volts, abbreviated to V
R = resistance in ohms, usually signified by the Greek omega Ω
Voltage = Current x Resistance giving us Current = Voltage / Resistance i.e. Voltage divided by resistance
Ohms law is: I = V / R (current = voltage / resistance)... where if the voltage or resistance changes then the current will change. ... the current and resistance is a inversely proportional linearly relationship ...this means that if the resistance doubles then the current halfs, if the resistance halfs then the current doubles, etc...hope this helps
the answer is current, voltage, and resistance
Resistance is not affected by either voltage or current. It is determined only by the cross-sectional area, length, and resistivity of the material. As resistivity is affected by temperature, resistance is indirectly affected by temperature.In the so-called 'Ohm's Law' equation, resistance is a constant. So, if you increase voltage, the resistance remains constant, and the current would increase in proportional to the voltage.
If resistance increases and voltage stays the same, then current decreases. Ohm's Law: Current equals Voltage divided by Resistance.
1). Voltage = (resistance) x (current)2). Current = (voltage) / (resistance)3). Resistance = (voltage) / (current)I think #2 is Ohm's original statement, but any one of these can be massaged algebraicallyin order to derive the other two.
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)
Ohm's law: voltage is current times resistance. Restating this; current is voltage divided by resistance, so increasing resistance would decrease current.
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)
Voltage and current are two different things. Voltage is the electric potential difference between two points. Expressed in volts, it is also joules per coulomb. Current is the charge flow past a point. Expressed in amperes, it is also coulombs per second. You can relate voltage and current using Ohm's Law, which states that voltage is equal to current times resistance. Resistance is, therefore, equal to voltage divided by current. Using base units, resistance is equal to joules per coulomb divided by coulombs per second, which simplifies to joule-seconds per coulomb squared. That is a difficult unit to write, so we just use ohms as the unit.
Ohm's Law: voltage = current * resistance. If resistance is a constant, then voltage is directly proportional to current.
In an electrical circuit, current is directly proportional to voltage and inversely proportional to resistance. This relationship is described by Ohm's Law, which states that current (I) equals voltage (V) divided by resistance (R), or I V/R.
Voltage = Current x Resistance giving us Current = Voltage / Resistance i.e. Voltage divided by resistance
In electrical systems, voltage and current are related by Ohm's Law, which states that voltage equals current multiplied by resistance. Therefore, high voltage does not necessarily mean high current, as the current also depends on the resistance in the circuit.
In an electrical circuit, resistance and voltage are directly related. According to Ohm's Law, voltage is equal to the product of resistance and current. This means that as resistance increases, voltage also increases, and vice versa.
Ohms law is: I = V / R (current = voltage / resistance)... where if the voltage or resistance changes then the current will change. ... the current and resistance is a inversely proportional linearly relationship ...this means that if the resistance doubles then the current halfs, if the resistance halfs then the current doubles, etc...hope this helps