stray capacitance calculation
Yes, all electronic components have both stray capacitance and stray inductance.
The voltage distribution across insulator strings is not equal, this because exist capacitances beteween insulators and tower and between insulators and conductor. So how i can calculate the stray capacitances across insulator strings?
A bridge has an upper frequency limit because above that frequency the measuement accuracy fails because of stray capacitance and inductance inside the bridge device.
Capacitance in mosfet is of three types: gate capacitance diffusion capacitance routing capacitance Gate capacitance: limits the speed of the device t which it can be operated Diffusion capacitance: It is the capacitance due to charge carriers between drain and source. Routing capacitance: It is the capacitance of the metal which is deposited on the top of oxide layer.
All underground cables have relatively high values of capacitance, due to the close proximity of their cores and earthed (grounded) metallic sheath. Manufacturers provide data for their cables, which express their capacitance in terms of capacitance per unit length, e.g. microfarads per metre.Certain categories of underground cable-fault can be located by measuring the capacitance (using an appropriate bridge circuit) of the healthy section of the cable then, having determined the capacitance per unit length for that type of cable, measuring-off the distance along the cable route to the fault position.
Yes, all electronic components have both stray capacitance and stray inductance.
Capacitance is an ability to store an electric charge. "If we consider two same conductors as capacitor,the capacitance will be small even the conductors are close together for long time." this effect is called Stray Capacitance.
Stray capacitance is undesired capacitance. Any electronic component (wires, resistors, etc.) has SOME capacitance; at high frequencies, this can become significant, becoming a problem for circuit design.
depends on circuit and its construction.
due to the load gates capacitance values,there is a increased load capacitance on the driving gate
You can reduce stray capacitance by avoiding having long wires running parallel in circuits. Keep wires as short as possible. Long wires running along each other can exhibit stray capacitance effects. Another way is to cut long leads of components such as capacitors and inductors to make them as short as possible. If best, use SM components, as they have no leads which can cause this stray capacitance effect.
no
The voltage distribution across insulator strings is not equal, this because exist capacitances beteween insulators and tower and between insulators and conductor. So how i can calculate the stray capacitances across insulator strings?
ANSWER Stray capacitance is the capacitance in a circuit not caused by capacitor components. There is a small capacitive effect, often on the order of a few picofarads, between leads of ICs, traces on a PCB, wires in a cable, the power and ground planes in a PCB, etc. In high-speed circuits, stray capacitance can be enough to completely change the operation of a circuit -- even to the point of keeping it from working as designed. Note that capacitor "components" can include PCB traces specifically designed to act as capacitors.
Parasitic capacitance is unavoidable and usually unwanted capacity between two or more conductors which exists due to close proximity and which typically causes non-ideal circuit behavior. Stray capacitance, as it is typically thought of, is a type of parasitic capacitance. It is the capacity from a conductor to its surroundings which is the aggregate of the conductors in its environment inversely weighted by the distance to each of the environmental conductors.
stray capacitance(one that develops between wires ,conductors within the circuit) is obviously not useful as it alters the effective values of circuit components when developed in the oscillators and hence it destabilize the frequency of oscillations Engr.syed mudassir hussain
Any two objects that occupy the same universe have capacitance between them. In electronic circuits components are quite close to each other, and this capacitance is often a nuisance, causing cross-talk, instability, and signal losses.