Volt amps is the same way of saying watts. This is seen in the formula Watts = Volts x Amps. Using the formula I = W/E we transpose I = 20000/240 = 83.33 amps.
That's a powerful motor, and would need a supply greater than 13 amps at 240 volts, also the conversion might be difficult. I have a feeling that you would be better off finding out how powerful a motor you would need for the task you have, then buying a suitable 240 volt motor. You are heading into territory where you should really consult a qualified electrician.
The formula you are looking for is I = W/E. Amps = Watts/Volts.
On a 1kva you have 1000 watts capacity. To fine the current the formula is I = W/E. The secondary side of the transformer has the capacity of 1000/120 = 8.3 amps. In your question you do not put the amps across the secondary you draw amps from it. Using the transformer to its maximum, without overloading it, the primary will be 4.16 amps at 240 volts and the secondary will be 8.33 at 120 volts. <<>> voltage times amps equals wattage
FLA is the nameplate amperage rating of the motor when it is running at its designed horsepower and on the motors designed voltage. 746 watts = 1 HP. The FLA of a 1 HP motor at 240 volts would be W = amps x volts, Amps = Watts/Voltage. 746/240 = 3.1 amps full load. Overload the motor and the amps go higher, motor running at no load amps are lower than FLA
24.87amps 1 hp=746 watts P=IxV ... (746x8)/240
It would be at least 250 amps, maybe 300 amps.
AWG #10 copper on a 30 amp breaker.
To find amps if watts and volts are known, use the formula; watts / volts = amps or 5000 / 240 = 20.83 amps
no
Presuming single phase and 1500 rpm. Normal running current would nearly 10 Amps but varies considerably. A real cheap one running at 3000/3600 rpm could exceed 12 amps. At 240 volt, all should be run off 15 Amp line.
No, a 31-watt motor operating at 240 volts would draw approximately 0.13 amps. This calculation is done using the formula P = IV, where P is power (31 watts), I is current (amps), and V is voltage (240 volts).
The formula for amps is I = W/E. Amps = 40/240 = .17 primary amperage. For the secondary amperage I = W/E. Amps = 40/24 = 1.7 amps.
Depends on the size of the LED light and the voltage applied. An example is an LED 24 volt globe light that pulls 8 watts which draw 0.333333 amps. Take an LED 120 volt light bulb draws 12 watts and will pull 0.1 amps. The same bulb at 240 volts wil draw 0.05 amps. it really depends on the watts and voltage applied. An average would be about 0.1 amps.
Minimum current would be 10000 divided by 240 but it might be up to 30% more if the load has a poor power factor.
at 240/50 volt itequates to 4amp
Volt amps is the same way of saying watts. This is seen in the formula Watts = Volts x Amps. Using the formula I = W/E we transpose I = 20000/240 = 83.33 amps.