In a transformer, the magnetic flux in the core remains constant due to the principle of electromagnetic induction. When alternating current flows through the primary winding, it creates a changing magnetic field that induces a voltage in the secondary winding. The core material, typically made of iron, provides a low-reluctance path for the magnetic flux, ensuring that most of the magnetic lines of force are confined within the core. As long as the input current is balanced with the load on the secondary side, the net magnetic flux remains stable, enabling efficient energy transfer between the windings.
A transformer is referred to as a constant flux machine because it operates under the principle of maintaining a constant magnetic flux in its core. When alternating current flows through the primary winding, it generates a magnetic field that induces a magnetic flux in the core. This magnetic flux remains constant as long as the core is not saturated, allowing the transformer to efficiently transfer electrical energy from the primary to the secondary winding through electromagnetic induction. Consequently, the design ensures that the magnetic circuit is optimized for minimal losses and maximum efficiency.
The operating flux density of an iron core transformer typically ranges from 1.2 to 1.8 Tesla, depending on the design and materials used. This flux density is crucial as it influences the transformer's efficiency, size, and heat generation. Higher flux densities can lead to core saturation, which affects performance and increases losses. Therefore, careful design is essential to optimize the flux density within these limits for effective operation.
The changing magnetic flux in the iron core of the transformer induces a voltage in the windings.
The flux density is set at the most the core material can stand, which for standard laminated transformer iron is around 1 Weber per square metre. Based on that and the cross-section area of the core, the volts per turn figure is calculated for both the primary and the secondary winding. If the operating voltage stays constant, so will the flux density and the iron losses.
by using an iron core
A transformer is referred to as a constant flux machine because it operates under the principle of maintaining a constant magnetic flux in its core. When alternating current flows through the primary winding, it generates a magnetic field that induces a magnetic flux in the core. This magnetic flux remains constant as long as the core is not saturated, allowing the transformer to efficiently transfer electrical energy from the primary to the secondary winding through electromagnetic induction. Consequently, the design ensures that the magnetic circuit is optimized for minimal losses and maximum efficiency.
since the volt amphere turns in secondary neautralises the primary voltamphere turns making the magnetic flux in the core remain constant
In a Transformer, Core flux is the difference of primary flux and Secondary flux which are opposite to each other in direction. There difference is equal to the no load flux at all loads. So, some of primary flux passes through the core and remaining becomes leakage flux (Because Secondary flux forces it to get out of the core). Same is the case with Secondary flux. Now, flux is directly proportional to Voltage and Current. When Current increases due to increased load (and voltage remains same): Then both primary and secondary flux increase. Because both of them increase, so there difference remains same. And all remaining flux is forced out. Hence leakage flux increases with current, but Core flux remains constant. When Primary Voltage is increased: Then only primary flux increases. So difference of this new increased primary flux and previous same secondary flux increases. Hence Core flux increases with voltage, But leakage flux does not. That's how In transformer core flux depends on voltage whereas leakage flux depends on current.
The flux is set by the voltage applied to the transformer. In most applications, the voltage is constant, and therefore the flux is constant also.
According to Faraday's Law only if there is change in flux linkage of a conductor then current is induced between mutual inductors. Now DC will induce a constant a constant flux in the transformer core, consequently in the secondary coil. So constant flux cannot induce a current in the secondary. SUBHRA JYOTI SAHA
when a load is connected to a transformer current(say I2) flows through secondary coil thus an M.M.F (N2I2) is produced ,this produces the secondary flux. This flux reduces the the main flux induced in the primary & also reduces E.M.F E1 in the primary As a result more current is drawn from the supply. This additional current drawn is due to the load component(say I2' ) This I2' is anti-phase with I2.This I2' sets a flux which opposes the secondary flux & helps the main flux. The load component flux neutralises the secondary flux produced by I2 .The M.M.F N1I2' balances N2I2.Thus the net flux is always at constant level. As practically flux is constant,the core loss is constant for all loads. Hence a transformer is always called a Constant Flux Machine.
when a load is connected to a transformer current(say I2) flows through secondary coil thus an M.M.F (N2I2) is produced ,this produces the secondary flux.This flux reduces the the main flux induced in the primary & also reduces E.M.F E1 in the primaryAs a result more current is drawn from the supply. This additional current drawn is due to the load component(say I2' )This I2' is anti-phase with I2.This I2' sets a flux which opposes the secondary flux & helps the main flux.The load component flux neutralises the secondary flux produced by I2 .The M.M.F N1I2' balances N2I2.Thus the net flux is always at constant level.As practically flux is constant,the core loss is constant for all loads.Hence a transformer is always called a Constant Flux Machine.
the function of core is to provide path to magnetic flux,a core may be armature core or may be transformer core
The operating flux density of an iron core transformer typically ranges from 1.2 to 1.8 Tesla, depending on the design and materials used. This flux density is crucial as it influences the transformer's efficiency, size, and heat generation. Higher flux densities can lead to core saturation, which affects performance and increases losses. Therefore, careful design is essential to optimize the flux density within these limits for effective operation.
yes core is usefull in transformer since it it increase the permeability for the flux (i..e,it offers less relucyance path thanj air ).Their by decresing the losses in the transformer.
A transformer core is a low-reluctance magnetic circuit, which ensures that most of the magnetic flux generated by the primary winding links with the secondary winding. Without a core, little of the magnetic flux generated by the primary winding will link with the secondary winding.
The changing magnetic flux in the iron core of the transformer induces a voltage in the windings.