Ohm's Law: Voltage equals Resistance times Current Given any two, you can figure out the other using simple algebra.
Voltage = Current x Resistance giving us Current = Voltage / Resistance i.e. Voltage divided by resistance
Ohm's Law Voltage = Current x Resistance
Ohm's Law: Voltage = current x resistance; solving for voltage, current = voltage / resistance.Ohm's Law: Voltage = current x resistance; solving for voltage, current = voltage / resistance.Ohm's Law: Voltage = current x resistance; solving for voltage, current = voltage / resistance.Ohm's Law: Voltage = current x resistance; solving for voltage, current = voltage / resistance.
The voltage is gained by multiplying the current and resistance together, i.e.. 50 x 500 = 25000 Imagine the three as a triangle with the voltage at the top, and the current and resistance at the bottom- V . ---- . I x R The voltage divided by the current is the resistance and the voltage divided by the resistance is the current. Therefore the current times the resistance is equal to the voltage. Having any two of these figures allows you to find the third.
Voltage across a resistance = (resistance) x (current through the resistance) =4 x 1.4 = 5.6If the ' 1.4 ' is Amperes of current, then the required voltage is 5.6 volts.
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)
Voltage = (current) x (resistance) Current = (voltage)/(resistance) Resistance = (voltage)/(current)
Voltage = Current x Resistance giving us Current = Voltage / Resistance i.e. Voltage divided by resistance
1). Voltage = (resistance) x (current)2). Current = (voltage) / (resistance)3). Resistance = (voltage) / (current)I think #2 is Ohm's original statement, but any one of these can be massaged algebraicallyin order to derive the other two.
Ohm's Law Voltage = Current x Resistance Current = Voltage divided by Resistance Resistance = Voltage divided by Current
The battery has 6 volts across its terminals. The way to discover it is to apply Ohm's law. It (Ohm's law) comes in 3 "flavors" that look a bit different but all say exactly the same thing. Here they are: E = I x R [Voltage equals current times resistance.] I = E/R [Current equals voltage divided by resistance.] R = E/I [Resistance equals voltage divided by current.] In these equations, voltage is E, current is I and resistance is R. They are measured in units of volts, amperes (or amps) and ohms, respectively. In your problem, we have the resistance (R) and the current (I). We need to find the voltage (E), and the formula E = I x R is the logical choice to discover the voltage. As E = I x R here, E = 0.75 x 8 = 3/4 x 8 = 6 volts. Piece of cake.
A light doesn't output current, it "draws" current based on voltage and its resistance. Voltage = Current x Resistance or Current = Voltage / Resistance. (Ohm's Law)
Ohm's Law Voltage = Current x Resistance
Ohm's Law: Voltage = current x resistance; solving for voltage, current = voltage / resistance.Ohm's Law: Voltage = current x resistance; solving for voltage, current = voltage / resistance.Ohm's Law: Voltage = current x resistance; solving for voltage, current = voltage / resistance.Ohm's Law: Voltage = current x resistance; solving for voltage, current = voltage / resistance.
The voltage is gained by multiplying the current and resistance together, i.e.. 50 x 500 = 25000 Imagine the three as a triangle with the voltage at the top, and the current and resistance at the bottom- V . ---- . I x R The voltage divided by the current is the resistance and the voltage divided by the resistance is the current. Therefore the current times the resistance is equal to the voltage. Having any two of these figures allows you to find the third.
Voltage across a resistance = (resistance) x (current through the resistance) =4 x 1.4 = 5.6If the ' 1.4 ' is Amperes of current, then the required voltage is 5.6 volts.