Yes, the resistance of the filament of a light bulb is what generates enough heat to make the filament glow and produce light.
Well, honey, the filament lamp doesn't give a hoot about Ohm's Law because its resistance changes with temperature. As the current increases, the temperature of the filament rises, causing the resistance to also increase. It's like trying to control a wild horse - good luck getting it to follow any law!
If the filament really was made from a material that has a negative temperature coefficient (as temperature increases, resistance decreases) then the decreasing resistance would cause more and more current to be taken as the lamp heated up and the temperature would get higher and higher in a runaway manner until either the power supply's breaker would trip or (more likely) the light bulb's filament would simply burn open. In fact the filament has to be made from a material that has a positive temperature coefficient. (As temperature increases, resistance increases.) Then, as the bulb's temperature rises, its filament's increasing resistance causes less current to be taken than when it was cold. Quite quickly a stable "steady-state" temperature and "running" resistance is reached so that the bulb simply continues to give out a steady amount of light according to the current it is taking from the electricity supply.
The current through a filament lamp will vary with the applied voltage and temperature of the filament. As the voltage increases, the filament heats up, which increases its resistance due to the temperature coefficient of the material. This leads to a non-linear relationship between voltage and current, resulting in a decrease in current for a given increase in voltage after a certain point. Consequently, the lamp will eventually reach a maximum brightness before potentially burning out if the voltage exceeds its rated capacity.
The bridge method, typically used for precise resistance measurements, is not well-suited for hot electric lamps because their resistance changes significantly with temperature. When the lamp is operating, its filament reaches high temperatures, resulting in a much higher resistance that can lead to inaccurate readings if measured directly. Additionally, the heat generated can affect the stability of the bridge circuit, introducing further errors. Therefore, measuring resistance while the lamp is hot does not provide reliable data.
Your standard light bulb where a filament is heated by a current passing through it. The heated filament then gives off light.
As potential difference increases in a filament lamp, resistance also increases due to an increase in temperature. The relationship between resistance and potential difference in a filament lamp is non-linear due to the temperature-dependent nature of resistance in the filament material. At low voltages, the resistance is relatively low, but as the temperature of the filament increases with higher voltages, the resistance also increases.
The relationship between the voltage and resistance in a filament lamp is non-linear. As the voltage increases, the resistance in the filament of the lamp also increases due to the heating effect. This increase in resistance causes the current to increase at a slower rate than expected, leading to a non-linear slope in the voltage-resistance graph.
A lamp with a thick filament will draw more current. What restricts the current flow in the filament is the resistance of the filament which increases as the temperature of the filament increases. A thin filament requires less energy to get heated up that a thick one so less current to achieve threshold resistance. Also a thick filament provides a broader path for current so there is less resistance per increase in degree centigrade. For these two (closely related but distinct) reasons it will require more current for the filament to get heated up to threshold resistance.
The filament is fine so that its electrical resistance can be quite high. It is also long, for the same reason. Usually it is coiled up to fit the length in the lamp. The heating effect of electric current is proportional to the current squared, time the resistance (I*I*R). Most of the effect is due to the current. The current through the filament must be limited to stop it melting. Adding resistance will do that. Taking resistance away increases heating. So, a low energy lamp has a very thin filament and a high energy lamp will have a thicker filament.
A lamp with a thick filament will draw more current. What restricts the current flow in the filament is the resistance of the filament which increases as the temperature of the filament increases. A thin filament requires less energy to get heated up that a thick one so less current to achieve threshold resistance. Also a thick filament provides a broader path for current so there is less resistance per increase in degree centigrade. For these two (closely related but distinct) reasons it will require more current for the filament to get heated up to threshold resistance.
A filament lamp is a non-ohmic conductor because its resistance changes with applied voltage. As the voltage increases, the resistance also increases. This is due to the temperature-dependent behavior of the filament material, which causes the resistance to vary.
Well, honey, the filament lamp doesn't give a hoot about Ohm's Law because its resistance changes with temperature. As the current increases, the temperature of the filament rises, causing the resistance to also increase. It's like trying to control a wild horse - good luck getting it to follow any law!
The lamp with the thicker filament has a lower resistance compared to the one with the thin filament. According to Ohm's law, lower resistance allows more current to flow through the thicker filament when connected in parallel to the same voltage source. This increased current results in a higher power output (P = I²R), causing the lamp with the thicker filament to burn more brightly.
because there is a correlation between resistance and voltage and current. The equation resistance = voltage divided by current shows that the higher the voltage, the bigger the resistance,, and the bigger the resistance the hotter the filament lamp will get because of the electrons bumping into each other which means there is a loss of energy and that energy is being transferred to the filament making the actual filament bulb hot since there is more thermal energy wasted at the end.
A nonlinear resistance is a resistance which is different for different voltages ie current is not proportional to voltage. An example of this is the filament of an incandescent lamp.
because there is a correlation between resistance and voltage and current. The equation resistance = voltage divided by current shows that the higher the voltage, the bigger the resistance,, and the bigger the resistance the hotter the filament lamp will get because of the electrons bumping into each other which means there is a loss of energy and that energy is being transferred to the filament making the actual filament bulb hot since there is more thermal energy wasted at the end.
I had to answer this and found out that............ The line on the graph that represents the filament lamp is curved because the resistance of it increases with supplied voltage Hope this is alright for you :) x