answersLogoWhite

0

One of the differences between electric and magnetic fields is that magnetic field lines always form closed loops.

true

User Avatar

Wiki User

10y ago

What else can I help you with?

Related Questions

What are One of the differences between electric and magnetic fields is that electric fields lines always form closed loops?

One key difference between electric and magnetic fields is that electric field lines originate from positive charges and end on negative charges, forming closed loops; whereas, magnetic field lines always form closed loops, never having a starting or ending point.


What are the differences between electromagnets and permanent magnets, and how do electromagnets differ from permanent magnets?

Electromagnets and permanent magnets differ in how they are created and their magnetic properties. Electromagnets are temporary magnets created by passing an electric current through a coil of wire, while permanent magnets are naturally occurring magnets with a fixed magnetic field. Electromagnets can be turned on and off by controlling the electric current, while permanent magnets always have a magnetic field.


Is The electric part of the electromagnetic wave always 90 degrees from the magnetic part?

yes, always.


Is an electromagnet always magnetic?

No. Only when an electric charge is put through the electromagnet.


Can an electric current produce a field magnetism around it?

yes. electric current low always generates a magnetic field.


Can a electric current runnng along a wire be used to produce a magnetic force?

Whether or not you use it, there's always a magnetic field surrounding an electric current.When anything that can respond to a magnetic force is brought close enough to the current,it does feel a magnetic force.


What are the differences between electromagnets and permanent magnets, and how do they function differently?

Electromagnets are temporary magnets created by passing an electric current through a coil of wire, while permanent magnets are naturally occurring magnets that retain their magnetism without an external power source. Electromagnets can be turned on and off by controlling the electric current, while permanent magnets always have a magnetic field.


Which is true of magnetic field lines but not electric firld lines apex?

Magnetic field lines always form closed loops, while electric field lines begin and end on charges. Additionally, magnetic field lines do not originate from monopoles, while electric field lines can begin and end on electric charges.


Are electric currents magnetic?

A magnetic field is always associated with a moving charge. So, if current is there, it must be showing the magnetic effects though these are too small of daily relevance..


Are there positive and negative magnetic charges analogous to positive and negative electric charges?

Outside the dubious field of magnetic therapists, the terms 'positive' and 'negative' are not applied to magnetic polarities. Furthermore, we do not describe magnetic polarity as a 'charge'. However, magnetic poles and electric charges follow the same rule -i.e. like poles repel while unlike poles attract.


Do electric and magnetic fields always form closed loops?

Magnetic fields do, because there's no such thing as an isolated magnetic "pole", and a magnetic line always starts and ends at opposite poles of the same magnetized object. But electric fields don't. You can easily have a bundle of isolated positive charge over here and a bundle of isolated negative charge over there, whereupon the lines of the electric field start on one bundle and end on the other bundle. But electric field lines can also exist in closed loops, and they do that in radio waves, where the electromagnetic field propagates with an electric field component and a magnetic field component, and they both form closed loops.


In what way are magnetic poles very different from electric charges?

Magnetic poles are always found in pairs (North and South), unlike electric charges which can exist independently. Magnetic poles also do not exist as isolated charges, while electric charges can be found separately. Additionally, magnetic charges do not exist as distinct entities like electric charges.