An inductor has two properties. The first is resistance(measured in ohms), which is due to the length, cross-sectional area, and resistivity of the conductor from which it is wound. The second is inductance (measured in henrys), which is due to the length of the inductor, its cross-sectional area, the number of turns, and the permeability of its core.
The inductor's resistance limits the value of current flowing through the inductor. The inductor's inductance opposes any change in current.
A: The inductor is called a RF choke
While it is true that an inductor opposes the flow of an alternating current, it does not necessarily 'block it'. The quantity that opposes the flow of an AC current is the inductor's inductive reactance, expressed in ohms. Inductive reactance is proportional to the frequency of the supply voltage and, at 50 or 60 Hz, the reactance of a transformer's winding is relatively low (although very much higher than its resistance) and, while this acts to limit the amount of current flow, it certainly doesn't act to block that flow.
resistance is the opposition to the flow of electric charge
Inductor impedance is given by jwL, where w=2*pi*frequency. Therefore as the frequency increases the impedance of the inductor increases, causing a larger current flow and a larger power dissipation across the inductor
Resistance
The resistance of an inductor is generally referred to as the series resistance, sometimes noted as RL. Note that resistance is a DC measurement and that an "ideal" textbook inductor has an RL of 0. The reactance of an inductor is an AC measurement which measures the reaction of a component's current flow to an alternating voltage and is frequency dependent and directly proportional to the inductor's inductance, measured in Henrie's. The impedance is most commonly used when talking about inductors or capacitors and is a combination of resistance and reactance.
A: The inductor is called a RF choke
While it is true that an inductor opposes the flow of an alternating current, it does not necessarily 'block it'. The quantity that opposes the flow of an AC current is the inductor's inductive reactance, expressed in ohms. Inductive reactance is proportional to the frequency of the supply voltage and, at 50 or 60 Hz, the reactance of a transformer's winding is relatively low (although very much higher than its resistance) and, while this acts to limit the amount of current flow, it certainly doesn't act to block that flow.
While it is true that an inductor opposes the flow of an alternating current, it does not necessarily 'block it'. The quantity that opposes the flow of an AC current is the inductor's inductive reactance, expressed in ohms. Inductive reactance is proportional to the frequency of the supply voltage and, at 50 or 60 Hz, the reactance of a transformer's winding is relatively low (although very much higher than its resistance) and, while this acts to limit the amount of current flow, it certainly doesn't act to block that flow.
Ohms, resistance in an inductor increases as the frequency of the AC signal increases, this "artificial resistance" is called impedence, and it is measured in ohms
The property that limits the current flow in an inductor is called inductive reactance. Inductive reactance increases with frequency, causing the inductor to resist changes in current flow. This property is a crucial part of inductor behavior in AC circuits.
An inductor blocks AC while allowing DC because it resists a change in current. The equation of an inductor is ...di/dt = V/L... meaning that the rate of change of current is proportional to voltage and inversely proportional to inductance.If you apply DC across an inductor, it will stabilize to some current flow based on the maximum current available from the current / voltage source. In this mode, the inductor presents very low resistance, so it can be said that it allows DC to pass.If, however, you apply AC across an inductor, you need to consider its inductive reactance by integrating the above equation in terms of the circuit conditions. The equation for inductive reactance is ...XL = 2 pi F L... meaning that the inductive reactance is proportional to the frequency and to the inductance.Thus, the higher the frequency, the higher the reactance. Since reactance is a phasor measure of resistance, it can be thus said that an inductor will block AC.
resistance is the opposition to the flow of electric charge
Inductor impedance is given by jwL, where w=2*pi*frequency. Therefore as the frequency increases the impedance of the inductor increases, causing a larger current flow and a larger power dissipation across the inductor
Because of Ac supply, current lags voltage by 90 in Inductor.
Resistance
Yes, with some difficulty. You can think of an inductor as a kind of "AC resistor"in a way. The higher the frequency of the AC, the more difficulty it has passingthrough the inductor.If you apply AC voltage across an inductor, whereV = voltage of the ACf = frequency of the ACL = inductance of the inductor,then the AC current through the inductor isI = V/2 pi f L