(R1 * R2) / (R1 + R2) = 2 Parallel
R1 + R2 = 9 Series
Treating the two as simultaneous equations, and substituting for R1:
((9-R2) * R2) / (9 - R2 + R2) = 2
R2^2 - 9R2 + 18 = 0
Solving the quadratic, we get:
R2 = 6 ohm R1 = 3 ohm
Which you can check by substituting back into the original equations.
it depends on how we are connecting them.if 5 1 ohm resistors are connected in series then the equivalent resistance is 5 ohms.if they are connected in parallel then the equi resistance is 1/5 ohms.
When many resistances are connected in series, the equivalent resistance is greater than the greatest single resistance. When many resistances are connected in parallel, the equivalent resistance is less than the smallest single resistance.
You can connect 4 resistors in series-parallel, i.e. two in series, both in parallel with another two, and the effective resistance would be the same as one resistor. Similarly, you can connect nine resistors in 3x3 series-parallel, or 16 resistors in 4x4 series-parallel, etc. to get the same resistance of one resistor.
The equivalent resistance of multiple resistors connected in series is the sum of theindividual resistances.(10 + 60 + 50) = 120 ohms for this particular trio of resistors in series.It makes no difference what battery they may be connected to, or if they're connected toany power supply at all.
When resistors of the same value are wired in parallel, the total equivalent resistance (ie the value of one resistor that acts identically to the group of parallel resistors) is equal to the value of the resistors divided by the number of resistors. For example, two 10 ohm resistors in parallel give an equivalent resistance of 10/2=5Ohms. Three 60 ohm resistors in parallel give a total equivalent resistance of 60/3 = 20Ohms. In your case, four 200 Ohm resistors in parallel give 200/4 = 50 Ohms total.
The equivalent resistance of resistors connected in series is simply the sum of their individual resistances. Therefore, the equivalent resistance of three 8.0-W resistors connected in series is 24.0 W.
There is no 'equivalent resistance' for three resistors connected in star.
Resistance in series is simply the sum of the resistors. RSERIES = SummationI=1,N(RI)
If three equal resistors are connected in parallel, the equivalent resistance will be one-third of the resistance in series. This lower resistance will result in a higher current flowing through the resistors when connected in parallel compared to when they are in series. Therefore, the power dissipated by the resistors in parallel will be greater than 10W.
When resistors are connected in series, the total resistance is the sum of the individual resistances. When resistors are connected in parallel, the total resistance is less than the smallest individual resistance.
Resistors connected in parallel have the same voltage across them, while resistors connected in series have the same current passing through them. In a parallel configuration, the total resistance decreases as more resistors are added, while in a series configuration, the total resistance increases.
it depends on how we are connecting them.if 5 1 ohm resistors are connected in series then the equivalent resistance is 5 ohms.if they are connected in parallel then the equi resistance is 1/5 ohms.
When many resistances are connected in series, the equivalent resistance is greater than the greatest single resistance. When many resistances are connected in parallel, the equivalent resistance is less than the smallest single resistance.
The equivalent resistance, from corner to corner, of 12 resistors connected in a cube is 5/6 that of a single resistor.Proof:Start from one corner and flow current through to the opposite corner. You have three resistors. Each of those three resistors is connected to two resistors, in a crisscross pattern. Those six resistors are then connected to three resistors which are connected to the other corner. By symmetry, the voltages at the upper junctions are the same, and then same can be said for the lower junction. You can then simplify the circuit by shorting out the upper junctions and (separately) the lower junctions. This means the circuit is equivalent to three resistors in parallel, in series with six resistors in parallel, in series with three resistors in parallel. This is 1/3 R plus 1/6 R plus 1/3 R, or 5/6 R.
The equivalent resistance is the overall effect all of the resistances in a circuit has. Put another way, it is the value a single resistor in a circuit would have to be in order to have the same effect as all of the resistors resistors combined in a given circuit.
Two resistors connected in parallel are 1/2 the sum of their resistance. The resistance of two resistors connected in series is the sum of their resistance. For example: The total resistance of a 100 ohm resistor connected to a 200 ohm resistor in parallel is 100+200 divided by 2 = 150 ohms. The total resistance of a 100 ohm resistor connected to a 200 ohm resistor in series 100+200= 300 ohms.
If the resistors are in series, then the total resistance is simply the sum of the resistances of each resistor.