A Counter-current flow has more advantages as comapared to a co-current flow.
When high temperatures may damage a heated fluid and heating requirements are low enough that can be met by the heating media temperature. Cocurrent flow heat transfer has lower heating (or cooling) capacity than counterflow and there is a theoretical cocurrent flow temperature limit achievable which is lower in heating (or higher in cooling) than the temperature achievable in counterflow.
In creating hemodialysis dialyzers, either a countercurrent or cocurrent flow can be used between the unfiltered blood and the dialysate used to clean the blood. Using a differential material balance (fluid mechanics) on the fluid and solute entering and leaving the device, the molar flow rate of the blood into the dialysate can be calculated. Without showing the math behind it, countercurrent flow if more efficient at cleaning the blood than cocurrent flow in a hemodialysis dialyzer. The reason for this is because the countercurrent flow allows the outlet concentration of the dialysate to exceed the outlet concentration of the blood, and approach the inlet concentration of the blood. With cocurrent flow, the exit concentration of the dialysate is slightly less than the outlet concentration of the blood, but much less than the inlet concentration. Physically speaking, countercurrent flow optimizes the concentration gradient throughout the length that the dialysate and blood are flowing next to one another. This causes more urea to diffuse through the membrane within this length, allowing the blood to be cleaned faster than cocurrent flow.
Better air flow, less chance of stoppages quietier systems
LDRs are switches (when the light hits them they allow electricity to flow if there is a full circuit). So LDRs are different to photodiodes in that way!
it is an eco friendly way to generate electricity. it doesn't cost much money and it does not pollute. the disadvantages though is that you need constant flow of water.
When high temperatures may damage a heated fluid and heating requirements are low enough that can be met by the heating media temperature. Cocurrent flow heat transfer has lower heating (or cooling) capacity than counterflow and there is a theoretical cocurrent flow temperature limit achievable which is lower in heating (or higher in cooling) than the temperature achievable in counterflow.
Aldo Sebastiani has written: 'Solvent extraction of copper with LIX64N in a cocurrent flow packed bed'
In creating hemodialysis dialyzers, either a countercurrent or cocurrent flow can be used between the unfiltered blood and the dialysate used to clean the blood. Using a differential material balance (fluid mechanics) on the fluid and solute entering and leaving the device, the molar flow rate of the blood into the dialysate can be calculated. Without showing the math behind it, countercurrent flow if more efficient at cleaning the blood than cocurrent flow in a hemodialysis dialyzer. The reason for this is because the countercurrent flow allows the outlet concentration of the dialysate to exceed the outlet concentration of the blood, and approach the inlet concentration of the blood. With cocurrent flow, the exit concentration of the dialysate is slightly less than the outlet concentration of the blood, but much less than the inlet concentration. Physically speaking, countercurrent flow optimizes the concentration gradient throughout the length that the dialysate and blood are flowing next to one another. This causes more urea to diffuse through the membrane within this length, allowing the blood to be cleaned faster than cocurrent flow.
Mahesh Baldevbhai Patel has written: 'Liquid hold-up and pressure drop in cocurrent flow of gas and non-Newtonian liquids through a packed bed'
* * * * *
* * * * *
Advantages of turbulent flow include increased mixing and heat transfer rates, which can be beneficial in certain industrial processes. However, turbulent flow also requires higher energy inputs and can result in increased frictional losses compared to laminar flow. Additionally, it can be more challenging to predict and model turbulent flow behavior accurately.
There are quite a few different advantages and disadvantages of using flow charts instead of text-based programming. One pro is that this is a visual aid that helps explain your ideas.
Advantages of a needle valve include precise flow control and the ability to handle high pressures. However, disadvantages can include susceptibility to clogging from debris and limited flow capacity compared to other types of valves.
why we plot side view of a duct?
the power can flow either way through autotransformer (345/120 kV) ?
Advantage: objects in a turbulent flow experience less drag. Disadvantage: turbulent flows are unstable meaning velocity and pressures change rapidly. The objects in the flow have less stability. The flow also is more difficult to model then a laminar flow.