answersLogoWhite

0

Angular acceleration is the rate of change of angular velocity over time. In SI units, it is measured in radians per second squared (Rad/s2), and is usually denoted by the Greek letter alpha (α).[1]

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Engineering

Why is millman's theorem called parallel generator theorem?

Because millman's is used in parallel ckt of impedances and voltage sources


What is a motor drive telescope?

It is a telescope on an equatorial drive (one axis parallel to the Earth's axis). An electric motor drives the other axis at 15 degrees per hour to follow an object as it moves across the sky.


Which correctly describes the path of a light ray that passes through a convex lens parallel to the major axis?

The light ray will bend towards the major axis, aiming for the focal point.


How do apply norton theorem?

Norton’s Theorem states that any linear electrical network with voltage and current sources and resistances can be simplified to a single current source in parallel with a single resistor. To apply Norton’s Theorem, first, identify the portion of the circuit you want to analyze and remove the load resistor. Then, calculate the Norton equivalent current (I_N) by finding the short-circuit current across the terminals and the Norton equivalent resistance (R_N) by turning off all independent sources and calculating the equivalent resistance seen from the terminals. Finally, replace the original circuit with the Norton equivalent circuit for analysis.


What is Miller's Theorem?

Milller's Theorem is used to simplify a circuit for circuit analysis. Instead of one impedance, which connectes two non-grounded nodes, Miller's Theorem allows this impedance to be broken down into two parallel impedances. One impedance can be seen as Z/(1-A) and the other impedance can be simplified to Z/(1-(1/A)). In this case, Z was the value of the original impedance, and A is the gain of the amplifier being analyzed.

Related Questions

If moment of inertia of a body change of axis of rotation?

If the moment of inertia of a body changes due to a change of axis of rotation, the new moment of inertia can be calculated using the parallel axis theorem. This theorem states that the moment of inertia about a new axis parallel to the original axis can be found by adding the mass of the body multiplied by the square of the distance between the two axes.


What is parallel axis theorem?

The parallel axis theorem is a principle in physics and engineering that allows the calculation of the moment of inertia of a rigid body about any axis parallel to an axis through its center of mass. It states that the moment of inertia ( I ) about the new axis is equal to the moment of inertia ( I_{cm} ) about the center of mass axis plus the product of the mass ( m ) of the body and the square of the distance ( d ) between the two axes: ( I = I_{cm} + md^2 ). This theorem is particularly useful in rotational dynamics for analyzing systems with complex shapes.


What is the Opposite Sides Parallel and Congruent Theorem?

The Opposite Sides Parallel and Congruent Theorem states that if a quadrilateral has a pair of opposite sides that are parallel and congruent, then the quadrilateral is a parallelogram.


State ane prove perpendicular axis theorem?

In physics, the perpendicular axis theorem (or plane figure theorem) can be used to determine the moment of inertia of a rigid object that lies entirely within a plane, about an axis perpendicular to the plane, given the moments of inertia of the object about two perpendicular axes lying within the plane. The axes must all pass through a single point in the plane.Define perpendicular axes , , and (which meet at origin ) so that the body lies in the plane, and the axis is perpendicular to the plane of the body. Let Ix, Iy and Iz be moments of inertia about axis x, y, z respectively, the perpendicular axis theorem states that[1]This rule can be applied with the parallel axis theorem and the stretch rule to find moments of inertia for a variety of shapes.If a planar object (or prism, by the stretch rule) has rotational symmetry such that and are equal, then the perpendicular axes theorem provides the useful relationship:DerivationWorking in Cartesian co-ordinates, the moment of inertia of the planar body about the axis is given by[2]: On the plane, , so these two terms are the moments of inertia about the and axes respectively, giving the perpendicular axis theorem.


Moment of inertia of parallel axis?

This is known as parallel axes theorem. Statement: If IG be the moment of inertia of a body of mass M about an axis passing through its centre of gravity, then MI (I) of the same body about a parallel axis at a distance 'a' from the previous axis will be given as I = IG + M a2


State and prove perpendicular axis and parallel axis theorem?

In physics, the perpendicular axis theorem (or plane figure theorem) can be used to determine the moment of inertia of a rigid object that lies entirely within a plane, about an axis perpendicular to the plane, given the moments of inertia of the object about two perpendicular axes lying within the plane. The axes must all pass through a single point in the plane.Define perpendicular axes , , and (which meet at origin ) so that the body lies in the plane, and the axis is perpendicular to the plane of the body. Let Ix, Iy and Iz be moments of inertia about axis x, y, z respectively, the perpendicular axis theorem states that[1]This rule can be applied with the parallel axis theorem and the stretch rule to find moments of inertia for a variety of shapes.If a planar object (or prism, by the stretch rule) has rotational symmetry such that and are equal, then the perpendicular axes theorem provides the useful relationship:


What is the proof of the parallel axis theorem?

The proof of the parallel axis theorem involves using the moment of inertia formula and the distance between two axes. By applying the formula and considering the distance between the axes, it can be shown that the moment of inertia of an object about a parallel axis is equal to the sum of the moment of inertia about the object's center of mass and the product of the object's mass and the square of the distance between the two axes.


State and prove the parallel axis theorem?

the moment of inertia of a body about a given axis is equal to the sum of its moment of inertia about a parallel axis passing through its centre of mass and the product of its mass and square of perpendicular distance between two axis Iz=Ix+Iy


What is the moment of inertia of a rod?

The moment of inertia of a cube depends on what its axis of rotation is. About an axis perpendicular to one of its sides and through the centre of the cube is (ML2)/6. Where M is the Mass of the Cube and L the length of its side. Due to the symmetry of the cube, you can find the Moment of Inertia about almost any other axis by using Parallel and Perpendicular Axis Theorems.


Why is millman's theorem called parallel generator theorem?

Because millman's is used in parallel ckt of impedances and voltage sources


Which proportionally theorem is described by a line parallel to one side of a triangle divides the other two sides?

The theorem you are referring to is the Basic Proportionality Theorem, also known as Thales' Theorem. It states that if a line is drawn parallel to one side of a triangle, it divides the other two sides proportionally. This means that the segments created on those two sides are in the same ratio as the lengths of the sides of the triangle.


Which lines or segments are parallel justify your answer with a theorem or postulate?

Parallel lines are parallel. Proof they have same slopes