answersLogoWhite

0

node is the point where amplitude minimal or tends to zero.suppose when we vibrate a strngs of guitar-in ths case the fixed point should be consider as node.

from- viveka bikas satpathy iit delhi,26596344

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Engineering

Write an iterative function to search an element in a binary search tree?

_node* search (_node* head, _key key) { _node* node; for (node=head; node != NULL;;) { if (key == node->key) return node; else if (key < node.>key) node = node->left; else node = node->right; } return node; }


Algoritm for deleting the last element from a list?

Given a list and a node to delete, use the following algorithm: // Are we deleting the head node? if (node == list.head) { // Yes -- assign its next node as the new head list.head = node.next } else // The node is not the head node { // Point to the head node prev = list.head // Traverse the list to locate the node that comes immediately before the one we want to delete while (prev.next != node) { prev = prev.next; } end while // Assign the node's next node to the previous node's next node prev.next = node.next; } end if // Before deleting the node, reset its next node node.next = null; // Now delete the node. delete node;


Is null node equal to leaf node?

No. A leaf node is a node that has no child nodes. A null node is a node pointer that points to the null address (address zero). Since a leaf node has no children, its child nodes are null nodes.


How many pointers will have to be changed if a node is deleted from a linear linked list?

For a singly-linked list, only one pointer must be changed. If the node about to be deleted (let's call it node for the sake of argument) is the head of the list, then the head node pointer must be changed to node->next. Otherwise, the node that comes before the deleted node must change its next pointer to node->next. Note that given a singly-linked node has no knowledge of its previous node, we must traverse the list from the head in order to locate that particular node, unless the node is the head of the list: void remove (List* list, Node* node) { if (!list !node) return; // sanity check!if (list->head == node) {list->head = node->next;} else {Node* prev = list->head;while (prev->next != node) prev = prev->next; // locate the node's previous nodeprev->next = node->next;}} Note that the remove function only removes the node from the list, it does not delete it. This allows us to restore the node to its original position, because the node itself was never modified (and thus still refers to its next node in the list). So long as we restore all removed nodes in the reverse order they were removed, we can easily restore the list. In order to delete a node completely, we simply remove it and then free it:void delete (List* list, Node* node) {if (!list !node) return; // sanity check!remove (list, node);free (node);} For a doubly-linked list, either two or four pointers must be changed. If the node about to be deleted is the head node, then the head node pointer must be changed to n->next and n->next->prev must be changed to NULL, otherwise, n->prev->next becomes n->next. In addition, if the node about to be deleted is the tail node, then the tail node pointer must be changed to n->prev and n->prev->next must be changed to NULL, otherwise, n->next->prev becomes n->prev. Deletion from a doubly-linked list is generally quicker than deletion from a singly linked list because a node in a doubly-linked list knows both its previous node and its next node, so there's no need to traverse the list to locate the previous node to the one being deleted. void remove (List* list, Node* node) {if (!list !node) return; // sanity check!if (list->head == node) {list->head = node->next;node->next->prev = NULL;} else {node->prev->next = node->next; }if (list->tail == node) {list->tail = node->prev;node->prev->next = NULL;} else {node->next->prev = node->prev; }} Again, to physically delete the node we simply remove and then free the node:void delete (List* list, Node* node) {if (!list !node) return; // sanity check!remove (list, node); free (node); }


How do you recursively reverse a singly linked list using c plus plus?

In this case recursion is not necessary, an iterative process is more efficient. Start by pointing at the head node. While this node has a next node, detach its next node and insert that node at the head. Repeat until the original head node has no next node. At that point the head has become the tail and all the nodes are completely reversed. The following example shows how this can be implemented, where the list object contains a head node (which may be NULL), and each node has a next node. The tail node's next node is always NULL. void reverse(list& lst) { if( node* p=lst.head ) { while(p->next) { node* n=p.next; // point to the next node p.next=n.next; // detach the next node n.next=lst.head; // insert the detached node at the head lst.head=n; // set the new head node } } }

Related Questions

Is it true or false a node is a point on a wave where there is no vibration?

True. In a wave, a node is a point that remains at zero displacement, meaning that there is no vibration occurring at that specific location. Nodes occur at regular intervals along a wave.


What is the Spot in a standing wave where vibrations cancel out each other and there is no vibration?

A node.


A node is a point on wave where there is no vibration?

True


What A node is a point on a wave where there is no vibration.?

A node is a point on a wave where the amplitude is zero, resulting in no vibration or displacement. Nodes occur due to destructive interference between waves traveling in opposite directions, canceling out the displacement at that point. Nodes are characteristic of standing waves and help define the wavelength of the wave.


Write an iterative function to search an element in a binary search tree?

_node* search (_node* head, _key key) { _node* node; for (node=head; node != NULL;;) { if (key == node->key) return node; else if (key < node.>key) node = node->left; else node = node->right; } return node; }


How to Print data of all nodes of linked list?

for (node=head; node!=null; node=node->next) printnode(node);


How to find the mirror image of a binary tree?

Refer to http://cslibrary.stanford.edu/110/BinaryTrees.html void mirror(struct node* node) { if (node==NULL) { return; } else { struct node* temp; // do the subtrees mirror(node->left); mirror(node->right); // swap the pointers in this node temp = node->left; node->left = node->right; node->right = temp; } }


Can we use doubly linked list as a circular linked list?

Yes. The tail node's next node is the head node, while the head node's previous node is the tail node.


Algoritm for deleting the last element from a list?

Given a list and a node to delete, use the following algorithm: // Are we deleting the head node? if (node == list.head) { // Yes -- assign its next node as the new head list.head = node.next } else // The node is not the head node { // Point to the head node prev = list.head // Traverse the list to locate the node that comes immediately before the one we want to delete while (prev.next != node) { prev = prev.next; } end while // Assign the node's next node to the previous node's next node prev.next = node.next; } end if // Before deleting the node, reset its next node node.next = null; // Now delete the node. delete node;


Is null node equal to leaf node?

No. A leaf node is a node that has no child nodes. A null node is a node pointer that points to the null address (address zero). Since a leaf node has no children, its child nodes are null nodes.


What is an intrathoracic node?

An intrathoracic node is a node within the chest cavity.


How many pointers will have to be changed if a node is deleted from a linear linked list?

For a singly-linked list, only one pointer must be changed. If the node about to be deleted (let's call it node for the sake of argument) is the head of the list, then the head node pointer must be changed to node->next. Otherwise, the node that comes before the deleted node must change its next pointer to node->next. Note that given a singly-linked node has no knowledge of its previous node, we must traverse the list from the head in order to locate that particular node, unless the node is the head of the list: void remove (List* list, Node* node) { if (!list !node) return; // sanity check!if (list->head == node) {list->head = node->next;} else {Node* prev = list->head;while (prev->next != node) prev = prev->next; // locate the node's previous nodeprev->next = node->next;}} Note that the remove function only removes the node from the list, it does not delete it. This allows us to restore the node to its original position, because the node itself was never modified (and thus still refers to its next node in the list). So long as we restore all removed nodes in the reverse order they were removed, we can easily restore the list. In order to delete a node completely, we simply remove it and then free it:void delete (List* list, Node* node) {if (!list !node) return; // sanity check!remove (list, node);free (node);} For a doubly-linked list, either two or four pointers must be changed. If the node about to be deleted is the head node, then the head node pointer must be changed to n->next and n->next->prev must be changed to NULL, otherwise, n->prev->next becomes n->next. In addition, if the node about to be deleted is the tail node, then the tail node pointer must be changed to n->prev and n->prev->next must be changed to NULL, otherwise, n->next->prev becomes n->prev. Deletion from a doubly-linked list is generally quicker than deletion from a singly linked list because a node in a doubly-linked list knows both its previous node and its next node, so there's no need to traverse the list to locate the previous node to the one being deleted. void remove (List* list, Node* node) {if (!list !node) return; // sanity check!if (list->head == node) {list->head = node->next;node->next->prev = NULL;} else {node->prev->next = node->next; }if (list->tail == node) {list->tail = node->prev;node->prev->next = NULL;} else {node->next->prev = node->prev; }} Again, to physically delete the node we simply remove and then free the node:void delete (List* list, Node* node) {if (!list !node) return; // sanity check!remove (list, node); free (node); }