Velocity diagrams are drawn perpendicular to the link ....whereas acceleration diagrams are drawn by knowing the values 2 components radial or centripetal component and tangential component.......the radial component moves parallel to the link and perpendicular to the velocity diagram.....but the tangential component moves perpendicular to the link and parallel to the velocity diagram .
1285.19 mph
The height of a wind turbine has no impact on the turbine's output wattage. The factors that effect the watts produced are: * The efficiency of turbine design (this is at most 59%) * the density of the air * the radius of the turbine (that is, the length of each fin) * the velocity of the wind passing through the turbine An 80 ft tall turbine would presumably have a fin length (that is, turbine radius) of at most 30 ft. Thus, at sea level on a 59 degree (F) day, in an 8 m/s (18mi/h) wind, with the most efficient turbine design possible, you would generate approximately 15.4 Kilowatts. See: http://en.wikipedia.org/wiki/Wind_turbine#Potential_turbine_power
The turbine converts pressure & heat energy (in steam turbine & gas turbine), velocity energy (in hydro turbine) into mechanical energy which produces rotation of the turbine. This mechanical force is used to rotate the rotor(which is coupled with the same shaft as that of turbine) of the generator which converts this mechanical energy into electrical energy.
It is an engine.A steam turbine is a heat engine that uses the expansion of steam passing through stationary nozzles and blades on a shaft to turn the shaft. The steam can move through the turbine axially (one end of shaft to the other end), radially (shaft to outer casing), or tangentially (around the outer edges of the turbine wheel). In an impulse turbine, the steam is expanded in nozzles and pushes the blades. In a reaction turbine the steam is expanded in the nozzles AND in the blades, the reaction of the expansion of the steam pushes away from the blades spinning the wheel in the process. The expansion of the steam is necessary to increase its velocity through the turbine.
When flow of water on turbine is tangential, flow is tangential flow
The angle between angular and tangential velocity is 90 degrees. Angular velocity is perpendicular to the direction of tangential velocity in a circular motion.
Angular velocity and tangential velocity are related in a rotating object by the equation v r, where v is the tangential velocity, r is the radius of the object, and is the angular velocity. This means that the tangential velocity is directly proportional to the radius and the angular velocity of the object.
The unit for tangential velocity is meters per second (m/s).
To determine the tangential velocity of an object in motion, you can use the formula: tangential velocity radius x angular velocity. The tangential velocity is the speed at which an object moves along its circular path. The radius is the distance from the center of the circle to the object, and the angular velocity is the rate at which the object rotates around the center. By multiplying the radius and angular velocity, you can calculate the tangential velocity of the object.
The tangential velocity of a rotating object is the component of its velocity that is perpendicular to the radius of the rotation. It is related to the overall velocity of the object by the equation v r, where v is the tangential velocity, r is the radius of rotation, and is the angular velocity. In simpler terms, the tangential velocity depends on how fast the object is spinning and how far away from the center it is.
In circular motion, tangential velocity is the speed at which an object moves along the circumference of the circle. It is perpendicular to the radius of the circle at any given point. The relationship between tangential velocity and circular motion is that the tangential velocity determines how fast an object is moving around the circle, while the radius of the circle affects the magnitude of the tangential velocity.
Tangential velocity is the component of velocity that is perpendicular to the radial direction in circular motion. It represents the speed at which an object is moving along the circular path. Tangential acceleration is the rate at which the tangential velocity of an object changes, causing the object to speed up or slow down in its circular motion.
the tangential velocity is equal to the angular velocity multiplied by the radius the tangential velocity is equal to the angular velocity multiplied by the radius
Yes, it is possible to have positive instantaneous tangential velocity and negative instantaneous tangential acceleration. This occurs when an object is moving in the positive direction but slowing down due to a decrease in its speed.
Tangential velocity can be found by multiplying the angular velocity (in radians per second) by the distance from the axis of rotation to the point of interest. It represents the speed at which an object is moving around a circle or rotating about a point.
The tangential velocity of a rotating object is greater when it is far from the center of rotation. This is because the object has to cover a larger distance in the same amount of time when it is farther from the center, leading to a higher tangential velocity.