The total resistance in a series circuit is simply the sum of the individual resistances of all the resistors connected in that series. This means that if you have multiple resistors, you add their resistance values together to find the total resistance. Mathematically, it can be expressed as ( R_{total} = R_1 + R_2 + R_3 + \ldots + R_n ). The total resistance increases as more resistors are added in series.
That depends ... in a very interesting way ... on whether they are connected in series or in parallel. -- If the resistors are in series, then the total resistance increases when you add another resistor, and it's always greater than the biggest single one. -- If the resistors are in parallel, then the total resistance decreases when you add another resistor, and it's always less than the smallest single one.
You add the resistances together to get the total resistance in a series circuit. Say... R1=10 R2=12 R3=10 R123=32
For the individual resistor, the current is constant, regardless of any other resister that's attached to it in parallel. The current that results from all the resistors combined decreases as the resistance of one or more of the resistors increases.
Simply put, the purpose of a resistor is to 'resist' the flow of current. Ohm's Law tells us that for a given voltage, the larger the resistance, or value of that resistor, the lower the current that will flow. Ohm's Law states that I (current) = E (voltage) / R (resistance) - where current is measured in amps, voltage is measured in volts and resistance is measured in ohms.
The total current in a circuit consisting of six operating 100 watt lamps connected in parallel to a 120 volt source is 5 amperes. Since power is volts times amps, take 600 watts (100 times 6) and divide by 120 volts to get 5 amps.
That depends ... in a very interesting way ... on whether they are connected in series or in parallel. -- If the resistors are in series, then the total resistance increases when you add another resistor, and it's always greater than the biggest single one. -- If the resistors are in parallel, then the total resistance decreases when you add another resistor, and it's always less than the smallest single one.
When resistors are wired in series, their resistances are added to find the total resistance. If they are run in parallel, or series-parallel, the formula is different
The resistance of two or more resistors connected in series is the sum of the individual resistances. (If any of the connections between them is sloppy and involves some resistance at the connection, then that also has to be added in.)
The total resistance in a circuit with series resistors is the sum of the individual resistances. When more resistors are added in series, the total resistance increases because the current has to pass through each resistor, making it harder for the current to flow.
Resistors connected in parallel have the same voltage across them, while resistors connected in series have the same current passing through them. In a parallel configuration, the total resistance decreases as more resistors are added, while in a series configuration, the total resistance increases.
You raise the total resistance by that amount if added in series to a circuit. If you add them in parallel to a circuit then that total resistance will be less than the total of the added circuit.
Resistance in a series circuit is added by simply connecting resistors end-to-end. This results in the total resistance being the sum of the individual resistances. The current passing through each resistor in a series circuit remains the same.
You add the resistances together to get the total resistance in a series circuit. Say... R1=10 R2=12 R3=10 R123=32
No. The resistance in a series circuit is all the resistor values added together. eg. If two resistors were in a circuit, one was 10 ohms and the other was 30 ohms, the resistance in the circuit would be 30 ohms. Hope this helps!
If the bulbs are in a series circuit the voltage drops at each bulb drops as additional bulbs are added. In a parallel circuit the voltage is constant no matter how many bulbs are added.
total resistance is each resistor added together
If the resistors are in series the voltage can not be divided, as it has to pass first through one then the other. The amount of current that flows through a set of resistors in series will be the same at all points and the total resistance in the circuit must be equal to the sum of all the individual resistors added together. In other words the 22k and 12k Ohm resistors are the sames as a single 34k Ohm resistor.