applications of modulas of elasticity
As the term implies, "Modulus of Elasticity" basically relates to the elasticity or "flexibility" of a material. The value of modulus of elasticity are very much significant relating to deflection of certain materials used in the construction industry. Take for example the general E value of mild carbon steel is about 200 GPa compared to about 70 GPa for aluminum. This simply translate that aluminum is 3 times flexible than steel.
Young's modulus
K(bulk modulus of elasticity)=-{[Pressure x volume]/change in volume}
1,500,000 to 1,600,000 psi.
Young's Modulus (modulus of elasticity) describes the stress-strain behavior of a material under monotonic loading. The dynamic modulus of elasticity describes the same behavior under cyclic or vibratory loading.
Because liquid is not malleable and ductile.
Yes, Young's Modulus is the same as Modulus of Elasticity.
Yes, the modulus of elasticity is the same as Young's modulus.
Young's modulus
the dimensions of Young's Modulus of Elasticity = (M).(L)^(-1).(T)^(-2)
Young's modulus
Yes, the tensile modulus is the same as the modulus of elasticity. Both terms refer to a material's ability to resist deformation under tensile stress.
Modulus of elasticity will be 2.06*10^5 N/mm2
there are different types of modulus it depends on what types of stress is acting on the material if its direct stress then then there is modulus of elasticity,if tis shear stress then its modulus of rigidity and when its volumetric stress it is bulk modulus and so on
The modulus of elasticity is the slope of the linear portion of the curve (the elastic region).
K(bulk modulus of elasticity)=-{[Pressure x volume]/change in volume}
30000000psi
the world