A circuit in which elements are connected in series.For example in RLC series circuit resistor,inductor and capacitor are connected in series.
What is meant by resonance and explain the series and parallel resonance? by kathiresan
IN A SERIES RLC CIRCUIT XL=XC.THEREFORE, IMPEDANCE Z IS MINIMUM AND Z=R.SINCE THE IMPEDANCE IS MINIMUM,CURRENT IN THE CIRCUIT WILL BE MAXIMUM. XL=XC MULTIPLYING BY MAX. CURRENT Io (AT RESONANCE) ON BOTH SIDES, WE GET, IoXL=IoXC I.E. Vlo=Vlc(POTENTIAL DIFFERENCE ACROSS INDUCTANCE IS EQUAL TO THE POTENTIAL DIFFERENCE ACROSS CAPACITANCE AND BEING EQUAL AND OPPOSITE THEY CANCEL EACH OTHER.)SINCE Io IS MAXIMUM,Vlo AND Vco WILL ALSO BE MAXIMUM.THUS,VOLTAGE MAGNIFICATION TAKES PLACE DURING RESONANCE.HENCE,IT IS ALSO REFERRED TO AS VOLTAGE MAGNIFICATION CIRCUIT.
o
Series resonance is called voltage resonance because at resonance frequency in a series RLC circuit, the impedance of the inductor and capacitor cancel each other out, resulting in minimum impedance. This causes the total voltage across the circuit to be maximized, leading to a peak in voltage across the components at resonance. This phenomenon is known as voltage resonance because it results in a maximum voltage across the circuit at that specific frequency.
No, the resonant frequency of a RLC series circuit is only dependant on L and C. R will be the impedance of the circuit at resonance.
1. The RLC series circuit is a very important example of a resonant circuit. It has a minimum of impedance Z=R at the resonant frequency, and the phase angle is equal to zero at resonance.AnswerThe impedance of an RLC circuit is the vector sum of the circuit's resistance, inductive reactance, and capacitive reactance -all of which are expressed in ohms. This applies whether the circuit is at resonance or not.
No. You have to consider the inductor and the capacitor. Impedance of RLC circuit is equal to to the Value of Resistor Only AND Only on Resonate frequency. otherwise u have to cnsider resistance inductance and capacitance together in series.
In a RLC series circuit the Q factor magnify the voltage to the circuit.
-- If the excitation source is AC, then the steady state of the circuit depends on the voltage, frequency, and waveform (harmonic content) of the source. -- If the excitation source is DC, then the steady state current in a series circuit is zero. DC doesn't pass through a capacitor.
A circuit in which elements are connected in series.For example in RLC series circuit resistor,inductor and capacitor are connected in series.
The phase shift angle of an RLC circuit is constant for a constant frequency, but changes with different frequencies.The phase angle of the AC in the RLC circuit is however continuously changing. Otherwise it wouldn't be AC.
What is meant by resonance and explain the series and parallel resonance? by kathiresan
An RLC circuit can affect the amplitude of a signal by either amplifying or dampening it. The circuit can resonate at a specific frequency, causing the amplitude of the signal to increase (in resonance) or decrease (out of resonance) depending on the values of the components. The circuit's impedance at a given frequency dictates how much the signal's amplitude will be affected.
when the frequency is increased the total impedance of a series RC circuit is decrease.
IN A SERIES RLC CIRCUIT XL=XC.THEREFORE, IMPEDANCE Z IS MINIMUM AND Z=R.SINCE THE IMPEDANCE IS MINIMUM,CURRENT IN THE CIRCUIT WILL BE MAXIMUM. XL=XC MULTIPLYING BY MAX. CURRENT Io (AT RESONANCE) ON BOTH SIDES, WE GET, IoXL=IoXC I.E. Vlo=Vlc(POTENTIAL DIFFERENCE ACROSS INDUCTANCE IS EQUAL TO THE POTENTIAL DIFFERENCE ACROSS CAPACITANCE AND BEING EQUAL AND OPPOSITE THEY CANCEL EACH OTHER.)SINCE Io IS MAXIMUM,Vlo AND Vco WILL ALSO BE MAXIMUM.THUS,VOLTAGE MAGNIFICATION TAKES PLACE DURING RESONANCE.HENCE,IT IS ALSO REFERRED TO AS VOLTAGE MAGNIFICATION CIRCUIT.
Answer:A given combination of R,L and C in series allows the current to flow in a certain frequency range only.For this reason it is known as an acceptor circuit i.e.,it accepts some specific frequencies....